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Abstract—Human emotional expression tends to evolve in a structured manner in the sense that certain emotional evolution
patterns, i.e., anger to anger, are more probable than others, e.g., anger to happiness. Furthermore the perception of an
emotional display can be affected by recent emotional displays. Therefore, the emotional content of past and future observations
could offer relevant temporal context when classifying the emotional content of an observation. In this work, we focus on
audio-visual recognition of the emotional content of improvised emotional interactions at the utterance level. We examine
context-sensitive schemes for emotion recognition within a multimodal, hierarchical approach: bidirectional Long Short-Term
Memory (BLSTM) neural networks, hierarchical Hidden Markov Model classifiers (HMMs) and hybrid HMM/BLSTM classifiers
are considered for modeling emotion evolution within an utterance and between utterances over the course of a dialog. Overall,
our experimental results indicate that incorporating long-term temporal context is beneficial for emotion recognition systems that
encounter a variety of emotional manifestations. Context-sensitive approaches outperform those without context for classification
tasks such as discrimination between valence levels or between clusters in the valence-activation space. The analysis of
emotional transitions in our database sheds light into the flow of affective expressions revealing potentially useful patterns.
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memory, Recurrent Neural Networks, emotional grammars

F

1 INTRODUCTION

Human emotional expression is a complex process where a
variety of multimodal cues interact to create an emotional
display. Furthermore, emotions are usually slowly varying
during a conversation and the perception of an emotional
display is affected, among others, by recently perceived past
emotional displays, which place the expressed emotion into
context. Taking into account such contextual information
may prove to be advantageous for real-life automatic emo-
tion recognition systems that can process a great variety of
complex, vague or ambiguous emotional displays. The focus
of this paper is to investigate learning frameworks for auto-
matic, multimodal emotion recognition that allow the use of
information of the structure of past and future evolution of
an emotional interaction. The study also considers the flow
of emotional expression by examining emotional transitions
in a variety of improvised affective interactions.

Psychology research suggests that human perception of
emotion is relative and emotional understanding is influ-
enced by context. Context in human communication can
broadly refer to linguistic structural information, discourse
information, cultural background and gender of the par-
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ticipants, knowledge of the general setting in which an
emotional interaction is taking place etc. For instance, psy-
chology literature indicates that facial information viewed
in isolation might not be sufficient to disambiguate the
expressed emotion and humans tend to use context, such as
past visual information [1], general situational understand-
ing [2], past verbal information [3] and cultural background
[4] to make an emotional decision. Also, emotions are
expressed through the interplay of multiple complementary,
supplementary and even conflicting modalities (facial ges-
tures, prosodic information, lexical content), and therefore
such multimodal cues provide context for each other [5].
For example, discordance in the emotions expressed by the
facial and vocal modalities degrades a subject’s ability to
correctly identify the emotion expressed by face or voice
separately [6]. Furthermore, emotions are usually slowly
varying states, typically lasting from under a minute to a
few minutes [7]. Therefore an emotion may span several
consecutive utterances of a conversation and emotional
transitions are usually smooth. For example, it seems rea-
sonable to assume that an angry utterance is more likely to
be succeeded by one displaying anger rather than happi-
ness.

Context awareness is recognized as an important element
in human-computer interfaces and can be broadly defined
as an understanding of the location and identity of the user
as well as the type and timing of the human-computer
interaction [8]. In the emotion recognition literature, rela-
tively few works make use of contextual information and
generally use diverse context definitions. In [9] the authors
propose a unimodal framework for short-term context mod-
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eling in dyadic interactions, where speech cues from the
past utterance of the speaker and his interlocutor are taken
into account during emotion recognition. In [10] lexical
and dialog act features are used in addition to acoustic
(segmental/prosodic) features. In [11] authors make use of
prosodic, lexical and dialog act features from the past two
turns of a speaker for recognizing the speaker’s current
emotional state. In [12] the author describes a framework for
building a tutoring virtual agent, where the tutor’s behavior
takes into account the student’s recent emotional state as
well as a variety of contextual variables such as the student’s
personality and the tutor’s goal. In [13] and [14] authors use
the formalization of domain ontologies to describe generic
frameworks for defining relations between emotion and
context concepts such as environment, physiological cues,
cultural information etc. In our previous work, we have
used neural network architetures such as Bidirectional Long
Short Term Memory (BLSTM) neural networks that take into
account an arbitrary amount of past and future audio-visual
emotional expressions to recognize the current emotion of
a speaker [15].

Following our previous work [16], we define context to
be information about the emotional content of audio-visual
displays that happen before or after the observation that we
examine. We focus on emotion recognition at the utterance
level. Here an utterance is loosely defined as a chunk of
speech where the speaker utters a thought or idea. The
phrases that we examine have been manually segmented
from longer dyadic conversations and usually last a few
seconds. In addition to the current utterance’s audio-visual
cues, we exploit information from an arbitrary number of
neighboring utterances that could range from one past or
future utterance to all the utterances of the conversation.
Apart from this definition of context which is our primary
focus, we could also interpret the use of audio-visual cues
as another form of context where the interplay within the
multimodal streams provides context for one another and
offers a fuller picture of the expressed emotion.

We investigate three alternative multimodal and hier-
archical schemes for incorporating contextual information
in emotion recognition systems, by modeling emotional
evolution at two levels: within an emotional utterance and
between emotional utterances of a conversation. Specifi-
cally, we examine the use of hierarchical Hidden Markov
Model (HMM) classifiers [17], of Recurrent Neural Net-
works (RNNs), and specifically BLSTM neural networks
[18], [19] as well as the use of a hybrid BLSTM/HMM
approach. The HMM-based classification is inspired by the
Automatic Speech Recognition (ASR) literature, where al-
gorithms exploit context at multiple levels within a Markov
model structure: from phonetic details including coarticula-
tion in speech production to word transitions reflecting lan-
guage based statistics [20], [21]. We hypothesize that similar
within and across model transitions can be advantageously
used to capture the dynamics in the evolution of emotional
states, including within and across emotional categories.
Alternatively, RNN architectures are a powerful, discrimi-
native framework that enables modeling the emotional flow
of a conversation without making Markov assuptions about
emotional transitions. Here, we apply BLSTM neural net-
works which overcome the vanishing gradient problem of
conventional RNNs and are able to learn from an arbitrarily
large amount of past and future contextual information [15].

For our experiments we use a large multimodal and
multisubject database of dyadic interactions between actors,
namely the IEMOCAP database [22], which contains de-
tailed facial information, obtained from facial Motion Cap-
ture (MoCap) as well as speech information. The IEMOCAP
database consists of dyadic conversations that are elicited
so as to contain emotional manifestations that are non-
prototypical and resemble real-life emotional expression.
Our goal is to obtain a realistic assessment of emotion recog-
nition performance, when our system is required to make
a decision about the emotional content of all possible input
utterances, including those containing subtle or ambiguous
emotions.

We focus on the recognition of dimensional emotional
descriptions, i.e., valence and activation levels, instead of
categorical emotional tags, such as ‘anger’ or ‘happiness’.
Valence describes how positive vs. negative and activa-
tion how calm vs. excited is the expressed emotion. We
derive a dimensional label for all available utterances by
averaging the decisions of multiple annotators. In addition
to classifying the degree of valence and activation sepa-
rately, we also investigate their joint modeling by classifying
among clusters in the two-dimensional valence-activation
space [23]. Our analysis of the relation between dimensional
attributes/clusters and categorical labels indicates that the
classification tasks are interpretable in terms of categori-
cal emotional content and allow us to have a meaningful
description of the emotion of an utterance. Modeling of
emotional transitions between utterances of an interaction
could be formulated equivalently using the concept of
probabilistic emotional grammars, which could inform us
about the structure of emotional evolution during affective
conversations.

Our experimental results show that incorporating tem-
poral context in emotion classification systems generally
leads to improvement in average performance for our
classification tasks, except for the case of activation. For
most of our context-sensitive classifiers we consistently
observe an increase in performance compared to classifiers
that do not take context into account. Such improvements
are statistically significant for the valence and the three
cluster classification task, for classifiers such as hierarchical
HMM and hybrid HMM/BLSTM. These results suggest that
context-sensitive approaches could pave the way for better
performing emotion recognition systems.

2 CONTEXT-SENSITIVE FRAMEWORKS

2.1 Hierarchical Context Sensitive Frameworks

Our problem can be posed as a two-level modeling problem
of an emotional conversation. At the higher level, an emo-
tional conversation is modeled as a sequence of emotional
utterances, while at the lower level, each such utterance
is modeled as a sequence of audiovisual observations. We
assume that an emotional utterance can be described by
a single emotional label, e.g., a single level of activation,
valence or a single cluster in the valence-activation space.
However, an emotional conversation may contain arbitrary
emotional transitions between utterances and may consist of
a variety of emotional manifestations. Therefore utterance
modeling captures the dynamics within emotional cate-
gories while conversation modeling captures the dynamics
across emotional categories.
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Fig. 1. A summary of our classification systems under the proposed hierarchical, context-sensitive framework. At the lower (utterance)
level, modeling of emotional utterances Ut is performed through emotion-specific HMMs, as illustrated in the lower left part of the
figure, or by computing statistical properties of each emotional class, as illustrated in the lower right part. At the higher level, which
represents the conversation context, emotional flow between utteraces of a conversation C is modeled by an HMM or a Neural Network
(Unidirectional or Bidirectional RNN or BLSTM). The different combinations of the approaches at lower and higher level, lead to
the three systems that we describe in this work: 2-level HMM, neural networks (NNs) trained with feature functionals, and hybrid
HMM/NN.

Let us denote a conversation C as a sequence of utter-
ances Ut, t = 1, . . . , T : C = U1, U2, . . . , UT and an utterance
Ui as a sequence of low-level observations (frames) Otj , j =
1, . . . , τ : Ut = Ot1, Ot2, . . . , Otτ . In Figure 1 we present a
summary of our approaches for modeling utterance and
conversation dynamics.

At the utterance level, we examine dynamic modeling by
using fully-connected HMMs, which may capture feature
statistics and underlying emotional characteristics in the
audio-visual feature streams. The intuition for using fully-
connected HMMs is that there is no apparent left-to-right
property in the dynamic evolution of the facial or vocal
characteristics during emotional expression (as opposed to
the evolution of phonemes during speech that is exploited
in phoneme-specific left-to-right HMMs in ASR). The use
of coupled- instead of simple, multistream HMMs enables
us to model asynchrony between the audio-visual streams.
Alternatively, we model the emotional utterance by esti-
mating static, utterance-level, statistical features, through
the use of statistical functionals over the low-level frame
sequence. Such an approach implicitly captures some of the
observation dynamics while it makes fewer modeling as-
sumptions compared to the HMM (no Markovian property,
conditional independence or synchronicity assumptions of
the underlying audio-visual sequences). At the dialog level,
we examine the use of HMM and discriminatively trained
neural network classifiers (RNN, BLSTM). The latter make
fewer assumptions on the underlying sequence of emotional
utterances and may potentially capture more complex pat-
terns of emotional flow.

Our approach of combining first and second layer HMMs
for dialog and utterance modeling leads to a two-level
structure, along the lines of multi-level HMMs [24] and Hi-
erarchical HMMs [17]. Alternatively, we examine the perfor-
mance of discriminatively trained neural network classifiers
for conversational modeling when statistical functionals are
extracted at the utterance level. In the hybrid HMM/BLSTM
approach, we keep the probabilistic dynamic modeling of
HMMs at the utterance level and use the emotion-specific
HMM log-likelihoods to form an utterance-level feature
vector, which is the input of the BLSTM at the conversation-
level. In the next sections we elaborate on these three
approaches.

2.2 Hierarchical HMM classifiers
The state of the art in sequence modeling, such as in ASR,
utilizes the Markov chain framework to model temporal
sequence context be it acoustic feature dependencies, pho-
netic symbol structure, local word structure or even dialog
states [20]. Here, we adopt a two-level HMM structure for
modeling the sequence of audio-visual observations at both
the utterance and the conversation level (context).

At the utterance level, the HMM classifiers are fully-
connected 3-state models, trained separately for each of
N emotional categories. Thus we have N models λi, i =
1, . . . , N , denoted in Fig. 1 as emoi. At the conversation level
we have one fully connected HMM with N states modeling
the N emotional categories. For each testing sequence of
utterances, we estimate the most likely emotional category
i for the current utterance Ut at time t, by finding the HMM
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Fig. 2. Sequential Viterbi Decoding passes. Viterbi Decoding is
performed in sequential subsequences (of length w+1) of the total
utterance observation sequence. The labeling decision for utterance
Ut at time t is affected by the labeling decisions of w past and w
future utterances.

λi, with the maximum likelihood (score) P (Ut|λi). These
scores are utilized by the higher level HMM to represent
the observation probabilities of the hidden emotional states,
while the transition probabilities between emotional states
P (j|i) can be computed from the train set. The most prob-
able sequence of emotional categories Q = q1, q2, . . . , qT for
an observed conversation C = U1, U2, . . . UT can be found
using the Viterbi decoding algorithm over the conversation
utterances. Therefore, when we make a decision about the
emotional content of the current utterance, we take into
account all past and future utterances of the utterance
sequence.

We have also investigated the effect of a variable length
of bidirectional context, that could range from one past or
future utterance to all the utterances in the conversation. For
this purpose, we have applied a modified Viterbi decoding
over shorter sequential windows which could also be useful
in realtime scenarios. Realtime systems may not afford
to wait for the whole conversation to end before making
a decision about the emotional content of the utterances
of the conversation. More specifically, we perform Viterbi
decoding in overlapping windows of length w+1 utterances
that scan the whole sequence. The score sit of each emotional
class i, i = 1 . . . N in the Viterbi lattice is initialized by the
likelihood P (Ut|λi). Then the sequence of scores is sequen-
tially updated: we take into account the decisions of the
previous Viterbi passes by incorporating them as weights
cit in the current Viterbi pass. The most probable emotion
according to the previous pass gets the highest weight. An
utterance Ut will be updated from w+1 consecutive Viterbi
passes, starting when the moving window begins at time
t− w − 1 and ends at t, and until the moving window has
reached time t as its starting point, as illustrated in Figure
2. The score sit of each emotional class i is finalized after the
window has moved after time t, and through this update
process w utterances left and right of Ut have been taken
into account when making a decision about the label of Ut.

The algorithm is desribed in Box 1 and the update
function works as follows:

sit ← logP (Ut|λi)

sit ← sit + cit

cit =

{
log(a) if qt = i from the previous pass
log(b) otherwise

where b < a and

N∑
i=1

cit = 1, t ∈ window

Box 1 Sequential Viterbi Decoding (seqVD)
1: place window of length w+1 at the beginning of the sequence

of utterances
2: repeat
3: current utterances ← utterances[window]
4: output sequence[window] ← VD(current utterances)
5: update(current utterances) using output sequence[window]
6: utterances[window] ← current utterances
7: shift window forward one utterance
8: until the end of all the utterances

The sequential Viterbi algorithm of Box 1 contains pa-
rameter a which is the the weight from the previous pass
and parameter w, which is the window size. In our ex-
periments these parameters are optimized across all folds
using the Nelder Mead algorithm [25]. This sequential
Viterbi decoding algorithm shares some similarities with
the Viterbi decoding method proposed in [26]. However in
contrast to [26] where the sequential Viterbi passes would
fix the decision of the initial observation within the current
window, in our approach a Viterbi pass just places a weight
on an observation utterance, to be used for the next pass.

The approach described in this section constitutes a sec-
ond layer of computation over the utterance-level, emotion-
specific HMM classifiers, and models the transitions be-
tween them. This can be viewed as a higher-level HMM,
where hidden states correspond to emotions and the transi-
tions describe the emotional evolution between utterances
in a conversation (temporal context).

2.3 BLSTM and RNN architectures

Classifiers such as neural networks are able to capture
a certain amount of context by using cyclic connections.
These so-called recurrent neural networks can in principle
map from the entire history of previous inputs to each
output. Yet, the analysis of the error flow in conventional
recurrent neural nets led to the finding that long-range
context is inaccessible to standard RNNs since the backprop-
agated error either blows up or decays over time (vanishing
gradient problem [27]). One effective technique to adress
the problem of vanishing gradients for RNN, is the Long
Short-Term Memory architecture [28], which is able to store
information in linear memory cells over a longer period of
time. LSTM networks are able to overcome the vanishing
gradient problem and can learn the optimal amount of con-
textual information relevant for the classification task. Thus,
LSTM architectures seem to be well-suited for modeling
context between successive utterances for enhanced emotion
recognition.

An LSTM layer is composed of recurrently connected
memory blocks, each of which contains one or more mem-
ory cells, along with three multiplicative ‘gate’ units: the
input, output, and forget gates. The gates perform functions
analogous to read, write, and reset operations. More specif-
ically, the cell input is multiplied by the activation of the
input gate, the cell output by that of the output gate, and
the previous cell values by the forget gate (see Figure 3). The
overall effect is to allow the network to store and retrieve
information over long periods of time. For example, as long
as the input gate remains closed, the activation of the cell
will not be overwritten by new inputs and can therefore be
made available to the net much later in the sequence by
opening the output gate.
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Fig. 3. LSTM memory block consisting of one memory cell: the
input, output, and forget gates collect activations from inside and
outside the block which control the cell through multiplicative
units (depicted as small circles); input, output, and forget gates
scale input, output, and internal states respectively; ai and ao
denote activation functions; the recurrent connection of fixed
weight 1.0 maintains the internal state.

Another problem with standard RNNs is that they have
access to past but not to future context. This can be over-
come by using bidirectional RNNs [29], where two separate
recurrent hidden layers scan the input sequences in opposite
directions. The two hidden layers are connected to the same
output layer, which therefore has access to context informa-
tion in both directions. The amount of context information
that the network actually uses is learned during training,
and does not have to be specified beforehand. Figure 4
shows the structure of a simple bidirectional network. Com-
bining bidirectional networks with LSTM gives bidirectional
LSTM (BLSTM) networks [15] which have been successfully
used in various pattern recognition applications such as
phoneme recognition [30] and emotion recognition from
speech [31].
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Fig. 4. Structure of a bidirectional network with input i, output
o, and two hidden layers (hf and hb) for forward and backward
processing.

In this work we use unidirectional and bidirectional
LSTM networks trained with utterance-level features,
specifically statistical functionals of audio-visual features.
The LSTM networks consist of 128 memory blocks with
one memory cell per block while the BLSTM networks
consist of two LSTM layers with 128 memory blocks per
input direction. The input layer has the same dimensionality
as the feature vector and the output layer has the same
dimensionality as the number of emotional classes we want
to classify. For training we used the RNNLib toolbox which
is available for download at [32].

2.4 Combination of HMM and BLSTM classifiers
We examine a combination of the HMM and BLSTM clas-
sifiers that takes advantage of both the explicit dynamic
utterance modeling of the HMM framework and the abil-
ity of the BLSTM to learn an arbitrarily long amount of
bidirectional context. We utilize the BLSTM network as a
second layer of computation over the HMM classifiers as
an alternative to Viterbi decoding. This combination has
the advantages of a two-layer classification structure; there-
fore there is transparency as to the performance improve-
ment we can gain from context modeling. Furthermore, the
HMM+BLSTM combination may potentially capture more
complex structure in the underlying emotional flow than
the one captured by an HMM.

In our implementation, we collect the log-likelihoods
logP (Ut|λi) for each utterance sequence Ut, t = 1, . . . T ,
generated by the emotion-specific HMM models λi, i =
1, . . . , N and we create an N-dimensional, utterance-level
feature vector of log-likelihoods. This is used as the input
to the higher-level BLSTM, as illustrated in method (3) of
Figure 1. Therefore at each time t the BLSTM will have as
input a feature vector containing the log-likelihoods of each
emotional category at that time. The BLSTMs are trained
using the output log-likelihoods produced on the training
set utterances.

3 DATABASE DESCRIPTION
The database used in this work is the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) database which con-
tains approximately 12 hours of audio-visual data from five
mixed gender pairs of actors [22]. Each recorded session
lasts approximately 5 minutes and consists of two actors
interacting with each other in scenarios that encourage emo-
tional expression. During each recording, both actors wore
microphones and one of them had face Motion Capture
(MoCap) markers. In this study, we examine the emotions
expressed when the actors wear the markers, so that there
is audio-visual information available.

The IEMOCAP database has been carefully designed to
elicit complex emotional manifestations and to avoid carica-
tures by exploiting acting techiques, such as improvisation.
The importance of such acting techniques in collecting
naturalistic, acted databases has been affirmed elsewhere in
the emotion literature, as a useful tool for studying emotions
in controlled environments [33][34]. Here, two acting styles
were used: improvisation of scripts and improvisation of
hypothetical scenarios. Each improvisation was designed
to convey a general emotional theme; for example, a sub-
ject is sharing the news of her recent marriage (happi-
ness/excitement), a subject is talking about the death of a
close friend (sadness), a subject who just lost her valuable
luggage at the airport learns that she will receive only a
small refund (anger/frustration). The scripts are taken from
theatrical plays and they are generally characterized by a
more complex emotional flow. The recordings, even those
with a general theme, contain multiple emotional displays
which vary in their intensity and clarity. The emotional
content of each utterance is not pre-defined and it generally
depends on the interpretation of the script/improvisation
by the actors and the course of their interaction. The
goal was to elicit emotional displays that resemble natural
emotional expression and are generated through a suitable
context.



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, MONTH YEAR 6

The dyadic sessions were later manually segmented into
utterances, where consecutive utterances of a speaker may
or may not belong to the same turn. We examine the se-
quence of utterances of a certain speaker during a recording,
and we make no distinction between utterances that are
separated by one or more utterances of the other speaker
and utterances that belong to the same turn. The emo-
tional content of each utterance was annotated by human
annotators in categorical labels (annotators had to choose
between the following emotions: angry, happy, excited, sad,
frustrated, fearful, surprised, disgusted, neutral and “other-
please specify”) and in dimensional descriptions of valence
and activation. Valence describes how positive vs. negative
and activation how calm vs excited is the expressed emo-
tion. Value 1 denotes very low activation and very negative
valence and 5 denotes very high activation and very positive
valence. Those properties are rated on scales 1-5 and are
averaged across 2 annotators (or for some few utterances
across 3 annotators).

The dimensional tags seem to provide more general
descriptions of an emotional expression. For example, a
large part of the utterances of the database (approx. 17%) do
not have a categorical label with a majority-vote agreement
of the evaluators. These utterances may be displaying subtle
or ambiguous emotions, that are hard to classify with a
single categorical label. However, annotators seem to have
an acceptable level of agreement in the dimensional labels of
such utterances. An analysis of the IEMOCAP dimensional
labels shows that for the data labeled by two evaluators, in
94% of the utterances evaluators agreed or were one point
apart in their rating of valence, and in 85% of the utterances
evaluators agreed or were one point apart in their rating of
activation.

Moreover, the use of dimensional labeling seems partic-
ularly suitable for analyzing temporal emotional context,
which is the main focus of this paper, since it enables
us to have a label for every utterance in the sequence of
consecutive utterances that make up a conversation. Here,
this label is derived by averaging the decisions of the
annotators. Considering categorical labels would introduce
’gaps’ in our observation label sequence for utterances with
no evaluator agreement or utterances that are labeled with
rarely occuring emotions, like fear and disgust. Training
emotional models for rare emotions would not be possi-
ble because of lack of data, while the treatment of a ’no
agreement’ class does not seem straightforward. Although,
both categorical and dimensional representations have their
merits, in the context of this work we focus our analysis on
the dimensional representation, and we use the categorical
labels to validate and interpret our results, as explained in
the following sections.

4 EMOTIONS AND EMOTION TRANSITIONS
4.1 Valence and Activation
The first emotion classification task that we consider in
this work consists of the classification of three levels of
valence and activation: level 1 contains ratings in the range
[1,2], level 2 contains ratings in the range (2,4) and level 3
contains ratings in the range [4,5]. These levels intuitively
correspond to low, medium and high activation, and to
negative, neutral and positive valence respectively. The class
sizes are not balanced since medium values of labels are
more common than extreme values. The choice of three

levels instead of five which was the initial resolution of
the valence and activation ratings was made to ensure that
a sufficient amount of data is available in each class for
emotional model training. For example, for activation 2%
of the averaged annotator labels (87 utterances) has a rating
of less or equal to 1.5 , which corresponds to the cases of
very low activation. When we used the 3-level scale the
low activation instances are 11% of the data or a total of
557 utterances.

The emotional information provided by the dimensional
tags is still related to categorical emotions in a meaningful
way. To examine this, we analyzed the available categorical
tags of the utterances that belong to each of the dimensional
classes. In Figure 5 we show how the utterances of each class
break down into categorical tags. Specifically the categorical
tags that we are considering in the IEMOCAP corpus are:
Angry, Happy, Excited, Sad, Frustrated, Fearful, Surprised,
Disgusted, Neutral, Other and No Agreement (n.a.). The
annotators of the categorical and dimensional tags of an
utterance are usually not the same. Specifically in Figure
5(a), we show how many utterances from each activation
class fall into each categorical emotional tag. Similarly, we
construct the bar graph for valence, which is presented in
Figure 5(b).

For both valence and activation assessment, the cate-
gorical labels generally agree with the dimensional tags,
according to what is known in the emotion literature about
the position of categorical emotions in the valence-activation
space [35]. Overall, the resulting bar graphs are intuitive.
For example, in the valence plot in Figure 5, we notice that
utterances that are annotated as having negative valence are
also generally perceived to express ‘negative’ emotions such
as anger, sadness, and frustration while utterances with
positive valence are generally perceived to express ‘positive’
emotions, such as happiness and excitement. An interesting
observation can be made regarding frustration (an emotion
hard to classify, since it could ressemble anger, sadness or
neutrality) where we can see that the valence assignment for
frustration observations is almost equally divided between
negative and neutral.

4.2 Clusters in the Emotion Space

We also examine the joint classification of the emotional di-
mensions by building three and four clusters in the valence-
activation emotional space. The motivation for clustering
the valence-activation space is to build classifiers that pro-
vide richer and more complete emotional information by
combining valence and activation information. We apply
data-driven clustering through K-means to automatically
select clusters that fit the distribution of the emotional man-
ifestations of our database in the emotional space (similar
approaches are also followed in [23],[9]). The ground truth
of every utterance is assigned to one of the clusters using the
minimum Euclidean distance between its annotation and
the cluster midpoints.

When abstracting our emotion classes into clusters of
the valence-activation space, we also study their relation to
the corresponding categorical annotations and investigate
which categorical emotional manifestations tend to fall into
each cluster. Specifically, we examine how each cluster
breaks down in terms of categorical labels. For example, in
Fig. 6(a) and 6(b) we illustate the 3 clusters in the emotional
space and the histogram of the categorical emotional tags
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(a) Activation (b) Valence

Fig. 5. Analysis of activation and valence classes in terms of categorical labels for all utterances of the database: anger (ang),
happiness (hap), excitement (exc), sadness (sad), frustration (fru), fear (fea), surprise (sur), disgust (dis), neutral (neu), other (oth),
and no agreement (n.a.). We notice that the categorical tags are generally consistent with the activation and valence tags.

valence

a
ct
iv
a
tio
n

(a) 3 clusters in the valence-activation space
(fold1)

(b) 3 clusters

Fig. 6. Analysis of classes in the 3 cluster task in terms of categorical labels. The bars and the error bars correspond to the mean
and standard deviation computed across the 10 folds. We notice that the data-driven clusters tend to contain different categorical
emotional manifestations according to their position in the emotional space. Specifically, clusters 1,2 and 3 roughly contain categorical
emotions of ‘anger or frustration’, ‘happiness or excitement’ and ‘neutrality or sadness or frustration’ respectively.

of the utterances they contain. Note that the utterances that
belong to each cluster depend on the training set of each
fold. Thus, the bar graphs in Fig. 6(b) represent the mean
over the 10 folds of our experiment (see also the experi-
mental setup in section 6.1) and the error bars represent
the standard deviation over the 10 folds. The plot of Fig.
6(a) corresponds to the first fold of our experiment, but
the differences across folds are relatively small (the average
standard deviation of the cluster centroid coordinates across
the ten folds is as low as 0.05).

Looking at Fig. 6(b) we notice that cluster c1 contains
large portions of utterances tagged as angry or frustrated,
cluster c2 contains utterances tagged as happy or excited
and cluster c3 utterances tagged as sad or neutral or frus-
trated. Therefore, we could think of the three clusters as
roughly containing emotions of ‘anger/frustration’, ‘happi-
ness/excitement’ and ‘sadness/neutrality/frustration’. This
agrees with Fig. 6(a), where the positions of the 3 clusters
are in areas of the valence-activation space that are generally
expected to contain emotional manifestations of ‘anger’,
‘happiness’ and ‘sadness or neutrality’. Similar observations
can be made for the 4 cluster classification task, where
by examining the corresponding bar graph of categori-
cal tags we notice that the four clusters roughly contain
emotions of ‘happiness/excitement’, ‘sadness/frustration’,

’anger/frustration’, and ‘neutrality’ (the plot and bar graph
are omitted for lack of space).

4.3 Emotional Grammars
Analysis of the emotional dialogs of our database reveals
that certain emotional transitions are more probable than
others, indicating that the underlying emotional flow fol-
lows certain typical patterns. In the two-level HMM ap-
proach, we have assumed that the underlying emotional
states form a Markov chain and applied an HMM at the con-
versation level to model emotion dynamics. Equivalently,
we could view this modeling as a Probabilistic Regular
Grammar (PRG) describing emotional transitions, using the
equivalence between PRGs and HMMs [36]. We can define
a PRG with initial state S1 as:

Si → wjSk or Si → wj

where Si represents an emotional state, wj represents an
emotional observation and the right arrow represents an
emotional transition. This modeling assumes that given
an internal emotional state Si, a person emits an audio-
visual emotional expression wj , e.g., tone of voice and
facial expression, and transitions to an internal emotional
state Sk. In this work, we only compute bigram emotional
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TABLE 1
Emotional transition bigrams for the valence, activation, 3 and 4 cluster classification tasks. For the 3 cluster case the most frequent

categorical emotions per cluster are : c1 = ’ang/fru’, c2 = ’hap/exc’, c3 = ’neu/sad’. For the 4 cluster case the most frequent
emotions per cluster are: c1 = ’hap/exc’, c2 = ’sad/fru’, c3 = ’ang/fru’ and c4 = ’neu’.

valence activation 3clusters 4clusters
Neg Neu Pos Low Med High c1 c2 c3 c1 c2 c3 c4

Neg 0.72 0.27 0.01 Low 0.34 0.63 0.03 c1 0.66 0.06 0.28 c1 0.71 0.06 0.03 0.20
Neu 0.23 0.65 0.12 Med 0.09 0.76 0.15 c2 0.06 0.78 0.16 c2 0.04 0.56 0.21 0.18
Pos 0.02 0.26 0.72 High 0.04 0.48 0.48 c3 0.24 0.12 0.64 c3 0.03 0.29 0.58 0.09

c4 0.19 0.25 0.08 0.49

utterance probabilities which give us a rough description
of the emotional flow between utterances. We utilize these
emotional grammars to gain insights about typical evolution
patterns in emotional expression and apply this knowledge
to inform emotion recognition tasks. This approach could
be extended to higher order transition models, which would
capture more detailed emotional patterns. Alternatively, we
also consider models that make fewer assumptions on the
underlying sequence and potentially have richer represen-
tation power, such as neural networks (here, BLSTM).

In Table 1 we present the transition probabilities for the
valence, activation, 3 and 4 cluster HMMs. The transition
probabilities have been approximated by counting all tran-
sitions between consecutive utterances of the database. For
the cluster tasks where the cluster tags of each utterance
may change according to the fold we present the average
transition probabilities across all folds. To test the statistical
significance of the transitions of Table 1, we performed
lag sequential analysis, as described in [37] (Chapter 7).
For all classification tasks and all emotional transitions we
find that the observed transitions are statistically signifi-
cantly different from the expected transitions if emotion at
utterance t was independent of the previous emotion at
utterance t − 1 (p-value < 0.001). Similar conclusions are
made when we compute table-wise statistics as described
in [37], specifically Pearson and likelihood-ratio chi-square
values, which support the hypothesis that the rows and
colums of each transition matrix are dependent (p< 0.001).
These statistical tests were performed using the GSEQ5
Toolbox [38].

The valence HMM states contain large diagonal self-
transition probabilities, suggesting that interlocutors tend
to preserve their valence states locally over time. In con-
trast, low and high activation states tend to be mostly
isolated phenomena since interlocutors tend to transition
to the medium activation state and preserve that state.
This indicates that emotional states of negative, neutral or
positive valence tend to last longer compared to high or
low activated emotional states which seem to be transient.
Indeed, out of all the low activated emotional manifestations
of our database 96% last at most 3 consecutive utterances,
and out of all the high activated emotional manifestations of
our database 90% last at most 3 consecutive utterances. The
corresponding proportions for the manifestations of nega-
tive, positive and neutral valence are around 75% which
means that a significant proportion of such emotions spans
over multiple utterances.

For the 3 cluster bigrams, frequent transitions happen be-
tween the ‘anger/frustration’ and the ‘neutrality/sadness’
clusters, as well as the ‘happiness/excitement’ and the
‘neutrality/sadness’ clusters, while transitions between

‘anger/frustration’ and ‘happiness/excitement’ clusters are
very rare. This indicates that interlocutors generally tran-
sition between a neutral state and an emotional state (of
positive or negative valence) but not directly between the
extreme valence states. For the 4 cluster HMM, we notice
that the ‘happy/excited’ cluster is the one with the high-
est self-transition probability. Frequent transitions happen
between ‘anger/frustration’ and ‘sadness/frustration’, and
between ’neutrality’ and most other states. These suggest
that interlocutors preserve their positive or negative valence
while changing their activation levels, i.e. transitioning be-
tween sadness, frustration and anger. Neutrality appears
to be an intermediate state when transitioning between
emotions of opposite valence.

The above observations concerning emotional transitions
depend on the structure of our database. Even though the
database design may not cover the full range of human
emotional interactions, one could argue that the conclusions
presented here could prove useful for processing human-
machine interactions where the variety and complexity of
emotions and emotional transitions are often limited com-
pared to the general possibilities in interpersonal human
interactions.

5 FEATURE EXTRACTION AND FUSION
5.1 Audio-Visual Frame-level Feature Extraction
The IEMOCAP data contain detailed MoCap facial marker
coordinates. The positions of the facial markers can be seen
in figure 7. The markers were normalized for head rotation
and translation and the nose marker tip is defined as the
local coordinate center of each frame. In total, information
from 46 facial markers is used; namely their (x,y,z) coor-
dinates. This results in a 138-dimensional facial represen-
tation, which tends to be redundant because it does not
exploit the correlations of neighboring marker movements
and the structure of the human face.

In order to obtain a lower-dimensional representation
of the facial marker information, we use Principal Feature
Analysis (PFA) [39]. This method performs Principal Com-
ponent Analysis (PCA) as a first step and selects features so
as to minimize the correlations between them. In contrast
to PCA, PFA selects features in the original feature space
(here marker coordinates) instead of linear combinations of
features, which makes selection results interpretable. We se-
lect 30 features, since the PCA transformation explains more
than 95% of the total variability. To these we append the first
derivatives, resulting in a 60-dimensional representation.
The facial features are normalized per speaker to smooth
out individual facial characteristics that are unrelated to
emotional expressions. Our speaker normalization approach
consists of finding a mapping from the individual average
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Fig. 7. Positions of the MOCAP face markers and separation of
the face into lower and upper facial regions.

face to the general average face. This is achieved by shifting
the mean value of each marker coordinate of each subject
to the mean value of that marker coordinate across all
subjects. The feature selection and normalization framework
is described in our previous work [40].

In addition, we extract a variety of features from the
speech waveform : 12 MFCC coefficients, 27 Mel Frequency
Band coefficients (MFB), pitch and energy values. We also
compute their first derivatives. All the audio features are
computed using the Praat software [41] and are normalized
using z-standardization. The audio and visual features are
extracted at the same framerate of 25 ms, with a 50 ms
window. The utterance-level audio HMMs were trained
using the 27 MFBs, pitch and energy along with their first
derivatives, while the visual HMMs were trained using the
30 PFA features with their first derivatives. For the audio-
visual HMMs and coupled-HMMs we used both these voice
and face features, fused at feature or at model-level.

5.2 Utterance-level Statistics of Audio-Visual Features

We use a set of 23 utterance-level statistical functionals
that are computed from the low-level acoustic and visual
features (see table 2). Thus, we obtain 142 × 23 = 3266
utterance-level features. All functionals were calculated us-
ing the openSMILE toolkit [42].

TABLE 2
Statistical functionals used for turnwise processing.

group functionals
extremes position of maximum, position of minimum
regression linear regression coefficients 1 and 2,

quadratic mean of linear regression error,
quadratic regression coefficients 1, 2, and 3,
quadratic mean of quadratic regression error

means arithmetic mean
percentiles quartiles 1, 2, and 3, interquartile ranges 1-2, 2-3, and 1-3,

1 %-percentile, 99 %-percentile, percentile range
others number of non-zero values, standard deviation, skewness,

kurtosis

In order to reduce the size of the resulting feature space,
we conduct a cyclic Correlation based Feature Subset Se-
lection (CFS) using the training set of each fold. The main
idea of CFS is that useful feature subsets should contain
features that are highly correlated with the target class while

being uncorrelated with each other [43], [44]. Note that
we deliberately decided for a filter-based feature selection
method, since a wrapper-based technique would have bi-
ased the resulting feature set with respect to compatibility
to a specific classifier.

Applying CFS to the 3266-dimensional feature space
results in an automatic selection of between 66 and 224
features, depending on the classification task and the fold.
For the valence classification task, on average 84 ± 1.1 %
of the selected features are facial features, whereas for
classification of the degree of activation, only 44 ± 1.8 %
of the features selected via CFS are facial features. This
underscores the fact that visual features tend to be well-
suited for determining valence while acoustic features re-
veal the degree of activation and agrees with the unimodal
classification results that are presented in the results section.
For a detailed analysis of the selected features see Table 3.

TABLE 3
Distribution of the features selected via CFS for the

classification of valence (VAL) and activation (ACT) as well as
for the discrimination of 3 and 4 clusters in emotional space (see

section 4.2).

feature group VAL ACT 3 clusters 4 clusters
pitch 5 % 4 % 3 % 4 %
energy 0 % 1 % 1 % 1 %
MFCC 4 % 21 % 11 % 11 %
MFB 7 % 30 % 18 % 19 %
lower face (Fig.7) 63 % 32 % 50 % 49 %
upper face (Fig.7) 21 % 12 % 17 % 16 %

5.3 Audio-Visual Feature Fusion

For the utterance-level HMM approaches where frame-level
features are used, we apply multi-stream HMM classifiers
(here denoted simply as HMMs). These assign different
importance weights to the audio and visual modalities and
assume synchronicity between them. When modeling the
dynamics of high level attributes such as emotional descrip-
tors of a whole utterance, allowing asynchrony in the dy-
namic evolution of the underlying audio-visual cues could
be beneficial. We also apply model-level fusion through
the use of coupled Hidden Markov Models (c-HMMs),
which allow this type of asynchrony, and have been widely
used in the literature [45], [46]. All models are trained
using the HTK Toolkit [21]. HTK offers the functionality
for defining and training a multi-stream HMM but it does
not explicitly allow for coupling of multiple single stream
HMMs. However, following the analysis presented in [46],
[47], we can implement c-HMMs in HTK using a product
HMM structure.

6 EXPERIMENTS AND RESULTS
6.1 Experimental Setup

Our experiments are organized in a cyclic leave-one-
speaker-out cross validation. The feature extraction PCA
transformations (for the face features) and the feature z-
normalization constants are computed based on the re-
spective training set of each fold. The mean and standard
deviation of the number of test and training utterances
across the folds is 498 ± 60 and 4475 ± 61, respectively.
For each fold, we compute the F1-measure, which is the
harmonic mean of unweighted precision and recall, as our
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primary performance measure. As a secondary measure we
also report unweighted recall (unweighted accuracy). The
presented recognition results are the subject-independent
averages over the ten folds and the corresponding standard
deviation.

In the next sections we present the results of the context-
sensitive neural network and HMM frameworks for the var-
ious classification tasks. We trained 3-state ergodic HMMs
and c-HMMs with observation probability distributions
modeled by Gaussian mixture models. The stream weights
and the number of mixtures per state (varying from 4 to
32 mixtures) have been experimentally optimized on a val-
idation set. For the context-sensitive HMM approaches, the
bigrams and the BLSTMs of each fold have been computed
or trained on the corresponding training set. The LSTM
networks consist of 128 memory blocks with one memory
cell per block while the BLSTM networks consist of two
LSTM layers with 128 memory blocks per input direction. To
improve generalization, we add zero mean Gaussian noise
with standard deviation 0.6 to the input statistical features
during training. The BLSTM networks that are trained to
process the HMM outputs (HMM+BLSTM) consist of 32
memory blocks per input direction.

6.2 Context-Free vs Context-Sensitive Classifiers

In this section, we compare the classification performance
between emotion-specific HMMs or c-HMMs, that do not
make use of context information, and our proposed context-
sensitive frameworks: hierarchical HMMs (or c-HMMs) us-
ing sequential Viterbi Decoding with bidirectional window
of w+1 utterances (HMM+HMM, c-HMM+HMM), BLSTM
trained with utterance-level feature functionals (BLSTM)
and hybrid HMM/BLSTM classifiers (HMM+BLSTM, c-
HMM+BLSTM). Table 4 shows the performances for dis-
criminating three levels of valence and activation, as well
as classification into three and four clusters in the valence-
activation space. To test the statistical significance of the
differences in average F1 performance between (c-)HMM,
(c-)HMM+HMM, (c-)HMM+BLSTM and BLSTM classifiers,
we conducted repeated measures ANOVA at the subject
level with Bonferonni adjustment for post-hoc tests, using
SPSS [48].

Concerning the valence results, we observe that fa-
cial features are much more effective in classifiying va-
lence than voice features, which agrees with our previ-
ous findings [16]. Regarding the audio-visual classifiers,
BLSTM achieves the highest average F1 measure, while
the emotion-specific HMMs benefit from the use of long-
range context, either through higher-level Viterbi Decoding
(HMM+HMM) or through the use of a higher-level BLSTM
(HMM+BLSTM). Statistical significance tests reveal that the
average HMM+BLSTM F1 measure is significantly higher
than that of the HMM at the 0.05 level. HMM+HMM
performance was not found significantly higher than HMM
performance, but it has a p value very close to the threshold
(p=0.055). Similarly the comparison of BLSTM and HMM
gives a p value of 0.06.

For the activation task, incorporating visual cues does
not improve performance significantly, indicating that audio
cues are more informative that visual cues. This agrees
with previous results in the emotion literature [49], [50].
Overall, we notice that taking temporal context into account
does not benefit activation classification performance for

TABLE 4
Comparing context-free and context-sensitive classifiers for

discriminating three levels of valence and activation, and three
and four clusters in the valence-activation space, using face (f)

and voice (v) features: mean and standard deviation of
F1-measure and unweighted Accuracy across the 10 folds (10

speakers).

classifier features F1 Acc.(uw)
valence

HMM v 49.85 ± 3.18 49.99 ± 3.63
HMM f 58.85 ± 3.86 60.98 ± 4.96
HMM v+f 60.79 ± 2.53 62.50 ± 3.39
cHMM v+f 60.42 ± 3.59 61.75 ± 4.66

HMM+HMM(w=2) v+f 62.02 ± 2.25 63.16 ± 3.18
HMM+BLSTM v+f 63.97 ± 3.03 62.78 ± 6.43

BLSTM v+f 65.12 ± 5.13 64.67 ± 6.48
activation

HMM v 57.54 ± 3.33 61.92 ± 4.88
HMM f 49.04 ± 4.40 51.36 ± 4.14
HMM v+f 57.56 ± 4.27 60.00 ± 4.45
cHMM v+f 57.39 ± 3.25 61.29 ± 5.16

HMM+HMM(w=4) v+f 57.71 ± 4.23 60.02 ± 4.54
HMM+BLSTM v+f 53.41 ± 5.99 46.93 ± 5.69

BLSTM v+f 54.90 ± 5.02 52.28 ± 5.37
3 clusters

HMM v+f 67.33 ± 5.15 66.18 ± 6.69
cHMM v+f 68.45 ± 3.38 67.95 ± 3.18

cHMM+HMM(w=4) v+f 70.36 ± 3.48 69.76 ± 3.09
cHMM+BLSTM v+f 68.09 ± 4.16 68.02 ± 4.72

BLSTM v+f 72.35 ± 5.10 71.83 ± 5.46
4 clusters

HMM v+f 56.54 ± 4.29 56.64 ± 5.90
cHMM v+f 57.28 ± 3.65 57.87 ± 4.33

cHMM+HMM(w=4) v+f 58.65 ± 3.80 58.89 ± 4.59
cHMM+BLSTM v+f 58.21 ± 5.24 57.94 ± 5.89

BLSTM v+f 62.80 ± 6.69 61.96 ± 7.02

HMMs (HMM+HMM), and the BLSTM and HMM/BLSTM
classifiers on average perform worse than the context-free
HMMs. This could be attributed to the isolated nature of
the extreme activation instances, as we have observed in
section 4.3. High and low activation events are isolated
between repeated instances of medium activation, therefore
the use of context-sensitive methods like Viterbi Decoding
(VD) or BLSTM tends to underestimate their probability of
occurence and ends in misclassifying them as medium ac-
tivation events (oversmoothing). Especially, the long-range
context modeling of the BLSTM does not seem to cap-
ture well the activation evolution and degrades activation
classification. For example when looking at the confusion
matrices of Table 5, we notice that when using the hybrid
HMM/BLSTM or BLSTM the performance of the high and
low activation classes greatly decreases compared to the
simple HMM.

For the three cluster task, we notice that context-sensitive
classifiers, such as c-HMM+HMM and BLSTM, on average
perform higher than the simple HMMs and c-HMMs, and
that the BLSTM classifier achieves the highest average F1
measure. The average F1 measure of cHMM+HMM was
found significantly higher that of c-HMM at the 0.05 level.
Similarly, for the four cluster task context-sensitive clas-
sifiers tend to outperform simple HMMs and cHMMs in
terms of average F1, although these differences are not
statistically significant at the 0.05 level.

In Table 5 we present the confusion matrices of
the (c-)HMM, the hierarchical (c-)HMM, the hybrid
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TABLE 5
Confusion matrices of the HMM, the hierarchical HMM, the hybrid HMM/BLSTM and the BLSTM classifiers for the activation
and 3 cluster classification tasks. For the 3 cluster case the correspondence between emotions and clusters is: c1 = ’ang/fru’, c2 =

’hap/exc’, c3 = ’neu/sad’.

activation
HMM, F1 = 57.56 HMM+HMM, F1 = 57.71 HMM+BLSTM, F1 = 53.41 BLSTM, F1 = 54.90

Low Med High Low Med High Low Med High Low Med High
Low 53.32 41.47 5.21 Low 53.32 41.47 05.21 Low 7.18 92.46 0.36 Low 28.42 69.27 2.31
Med 14.66 62.61 22.73 Med 14.40 62.96 22.64 Med 1.28 92.31 6.41 Med 6.75 78.65 14.60
High 0.93 30.93 68.14 High 0.93 31.13 67.94 High 0 58.66 41.34 High 0.51 49.13 50.36

3clusters
cHMM, F1 = 68.45 cHMM+HMM, F1 = 70.36 cHMM+BLSTM, F1 = 68.09 BLSTM, F1 = 72.35

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3
c1 70.78 13.96 15.26 c1 71.82 13.24 14.94 c1 70.12 10.70 19.18 c1 72.20 8.73 19.07
c2 16.39 67.56 16.05 c2 15.98 69.15 14.88 c2 18.60 65.22 16.18 c2 16.77 67.75 15.48
c3 22.83 11.86 65.31 c3 22.83 10.55 66.61 c3 21.11 9.82 69.07 c3 14.72 9.69 75.59

(c-)HMM/BLSTM and the BLSTM classifiers for the 3 clus-
ter and activation classification tasks, in order to give a
description of the confusion between classes for a task
where context is beneficial (3 cluster) versus a task where
context is not beneficial (activation).

Overall, our results suggest that incorporating context is
beneficial for the valence and the three and four cluster
classification. The BLSTM classifier generally achieves the
highest classification performance, although performance
across folds has a relatively high variance. The hierarchi-
cal HMM and hybrid HMM/BLSTM classifiers perform
similarly in general, and lower than the BLSTM in terms
of average F1 measure, although they tend to have more
consistent performance across subjects (smaller variance).
Regarding the hierarchical HMM approach we notice that
a small amount of bidirectional context (e.g., w=4) can
give a performance increase. We have omitted the results
of the HMM+HMM architecture where Viterbi Decoding
is used over the total observation sequence. For all our
classification tasks, the results are very similar to the ones
obtained through sequential VD with small window sizes,
which suggests that it is possible to increase recognition
performance even when a small amount of bidirectional
context is used. These observations are encouraging and
suggest that this algorithm could be applied in practical
scenarios where an emotion recognition system might not
afford to wait for the conversation to end in order to
perform recognition, while it might be acceptable to wait
a few utterances before making a decision.

Note that there are significant variations in the perfor-
mance and rankings across different folds for all classifi-
cation approaches, as indicated by the variances of Table
4 and the results of the statistical significance tests. These
suggest that no approach is clearly superior for all speakers.
Our insight is that these variations could result from speaker
dependent characteristics of emotional expression, i.e., some
speakers may be more overtly expressive than others or
may make different expressive use of the audio and visual
modalities.

To the best of our knowledge, there are no published
works that report classification results of dimensional la-
bels using the IEMOCAP database in a way that would
allow direct comparison with our results. The most relevant
past works are [9] and [51], however for both cases our
experimental setup is more generic. In [9] authors perform
speech-based classification of dimensional labels, however,

the train and test sets are randomly split into 15 cross
validations. Our subject independent setting is considerably
more challenging for classification. In [51] authors perform
speech-based classification of valence and activation, only
for utterances with categorical labels of angry, happy, neu-
tral and sad. Furthermore, the authors remove utterances
that seem to have conflicting categorical and dimensional
labels which simplifies the problem as it removes potentially
ambiguous emotional manifestations.

6.3 Context-Sensitive Neural Network Classifiers
In this section, we compare the recognition performances
of various Neural Network classifiers which take into ac-
count different amount of unidirectional and bidirectional
context. The results are presented in Table 6. (B)LSTM
architectures achieve a higher average F1 measure com-
pared to (B)RNN architectures which indicates the merit
of learning a longer range of temporal context for emotion
recognition tasks. Also, bidirectional neural networks, such
as BLSTMs and BRNNs, outperform their respective uni-
directional counterparts, such as LSTM and RNN, which
suggests the importance of bidirectional context for these
architectures. The performance differences between these
context-sensitive NNs, although not statistically significant,
indicate a consistent trend in performance across all clas-
sification tasks, with BLSTM being the highest performing
classifier.

6.4 Context Learning of the BLSTM Architectures
To investigate the importance of presenting training and
test utterances in the right order during BLSTM network
training and decoding, we repeated all BLSTM classification
experiments using randomly shuffled data, i.e., we pro-
cessed the utterances of a given conversation in arbitrary
order so that the network is not able to make use of
meaningful context information. As can be seen in Table 7,
this downgrades recognition performance. To test the statis-
tical significance of this result, we performed paired t-tests
and found that the differences in average F1 measures are
statistically significant at the 0.05 level for all classification
tasks, except for the case of activation. These results suggest
that the high performance of the BLSTM classifiers is to
a large extent due to their ability to effectively learn an
adequate amount of revelant emotional context from past
and future observations. They can also be interpreted as fur-
ther evidence that learning to incorporate temporal context
information is important for human emotion modeling.
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TABLE 6
Comparing context-sensitive Neural Network classifiers for

discriminating three levels of valence and activation, and three
and four clusters in valence-activation space using face (f) and
voice (v) features: mean and standard deviation of F1-measure

and unweighted Accuracy across the 10 folds (10 speakers).

classifier features F1 Acc.(uw)
valence

RNN v+f 63.34 ± 4.58 62.92 ± 6.00
BRNN v+f 64.10 ± 5.05 63.68 ± 6.64
LSTM v+f 63.71 ± 4.86 63.76 ± 5.95

BLSTM v+f 65.12 ± 5.13 64.67 ± 6.48
activation

RNN v+f 52.78 ± 5.21 48.54 ± 5.59
BRNN v+f 53.93 ± 4.12 49.98 ± 4.62
LSTM v+f 53.65 ± 4.97 50.35 ± 5.83

BLSTM v+f 54.90 ± 5.02 52.28 ± 5.37
3 clusters

RNN v+f 69.59 ± 5.75 69.34 ± 5.95
BRNN v+f 69.94 ± 5.65 69.76 ± 6.00
LSTM v+f 70.34 ± 5.85 69.53 ± 6.61

BLSTM v+f 72.35 ± 5.10 71.83 ± 5.46
4 clusters

RNN v+f 58.30 ± 6.63 57.29 ± 7.28
BRNN v+f 60.10 ± 5.96 59.14 ± 6.72
LSTM v+f 61.93 ± 5.96 61.02 ± 6.15

BLSTM v+f 62.80 ± 6.69 61.96 ± 7.02

TABLE 7
Recognition performances (%) of BLSTM networks when

training on the original sequence of utterances compared to
when the utterances are randomly shuffled: mean and standard

deviation of F1-measure and unweighted Accuracy across the 10
folds (10 speakers).

classifier features F1 Acc.(uw)
valence

BLSTM v+f 65.12 ± 5.13 64.67 ± 6.48
BLSTM(shuffled) v+f 59.71 ± 4.51 58.98 ± 5.14

activation
BLSTM v+f 54.90 ± 5.02 52.28 ± 5.37

BLSTM(shuffled) v+f 52.10 ± 6.86 46.35 ± 6.78
3 clusters

BLSTM v+f 72.35 ± 5.10 71.83 ± 5.46
BLSTM(shuffled) v+f 67.86 ± 5.08 66.61 ± 4.95

4 clusters
BLSTM v+f 62.80 ± 6.69 61.96 ± 7.02

BLSTM(shuffled) v+f 59.27 ± 6.40 57.93 ± 6.88

7 CONCLUSION AND FUTURE WORK
In this work we have described and analyzed context-
sensitive frameworks for emotion recognition, i.e., frame-
works that take into account temporal emotional context
when making a decision about the emotion of an utter-
ance. These methods, which utilize powerful and popular
classifiers, such as HMMs and BLSTMs, could be viewed
under the common framework of a hierarchical, multimodal
approach, which models the observation flow both at the
utterance level (within an emotion) and at the conversa-
tion level (between emotions). The different classifiers that
can be chosen for each level reflect different modeling
assumptions on the underlying sequences and account for
different system requirements. Our emotion classification
experiments indicate that taking into account temporal con-
text tends to improve emotion classification performance.
Overall, context-sensitive approaches outperform methods

that do not consider context for the recognition of valence
states and emotional clusters in the valence-activation space,
in terms of average F1 measure. However, the relatively
large performance variability between subjects suggests that
no method is clearly superior for all subjects. Additionally,
the use of context from both past and future seems ben-
eficial, as suggested by the slightly higher performance of
bidirectional neural networks (BLSTM, BRNN) compared to
their unidirectional counterparts. Even the use of a small
amount of context around the current observation, e.g.,
from the use of the sequential VD algorithm with a small
window of w+1 utterances, leads to performance improve-
ment, which is an encouraging result for designing context
sensitive frameworks with performance close to real-time.
The only emotion classification task that does not benefit
significantly from context is activation, possibly because of
the isolated nature of the extreme activation events, which
makes this structure difficult to model.

According to our results, neural network architectures,
and specifically (B)LSTM networks trained with utterance
level feature functionals achieve a higher average perfor-
mance than HMM classification schemes. This could be
attributed to their discriminative training, fewer modeling
assumptions and their ability to capture long-range, bidi-
rectional temporal patterns of the input feature streams
and output activations. BLSTM networks can learn an ad-
equate amount of relevant emotional context around the
current observation, during the training stage. When such
context is not present, for example when we randomly
shuffle the utterances of a conversation, the performance
of the BLSTM classifiers significantly decreases. However
(B)LSTM and (B)RNN classifiers seem to have difficulties
handling emotional expression variability between sub-
jects, therefore their performance may vary significantly
across people. HMM classification frameworks and hybrid
HMM/BLSTM frameworks, on average perform lower than
neural networks, but generally achieve more consistent
classification results across subjects. They provide a struc-
tured approach for modeling and classifying sequences at
multiple levels, they have more trasparency as to what
amount of context is used and they are generally flexible.
For example, HMM+HMM classifiers can be modified to
use limited context so as to suit possible requirements of
real-time emotion recognition systems.

Analysis of the emotional flow in the conversations of
our database indicates an underlying structure in typical
emotional evolution. For example valence states seem to
last longer than activation states of high or low activation,
which are more transient. Also, some emotional transitions
are more frequent than others, i.e., a transition between
neutrality and an emotional state is much more likely
than a transition between two emotional states of opposing
valence (happy from/to angry). Simple first order transition
probabilities provide a rough description of the emotional
flow and lead to modeling emotional utterances in a con-
versation using an HMM. This can be seen equivalently
as a Probabilistic Regular Grammar (PRG) for emotional
utterances. One could perform more complex modeling
of a conversation and look for equivalent grammars with
more representation power than a PRG. Although such
conclusions depend on the design of our database and may
not cover the full range of human emotional interactions,
one could argue that they contain useful information about
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typical structure of emotional transitions.
In this work we have focused on context in the sense

of past and future observations that are informative of the
current observation. However, a broader definition of con-
text could include general situational understanding which
would give us prior information as to which emotional
states are more likely to occur and when. In the future,
we plan to focus on methods to incorporate higher-level
context in emotion recognition systems and exploit informa-
tion from both interlocutors in the dyadic interaction. The
emotional states of interlocutors in dyadic interactions are
often related and influence each other; therefore, past and
future context from the other speaker is expected to provide
revelant information [9]. Also, our analysis assumes that
each conversation is manually presegmented into utterances
and that the emotional state within each utterance can be
described by a single emotional label. It is important to
examine alternative data-driven segmentations of a con-
versation into emotionally homogenous chunks, that might
allow us to look into emotional transitions at scales finer
than the utterance level. Finally, in future we would like
to examine the performance of our methods on real-life,
spontaneous datasets.
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