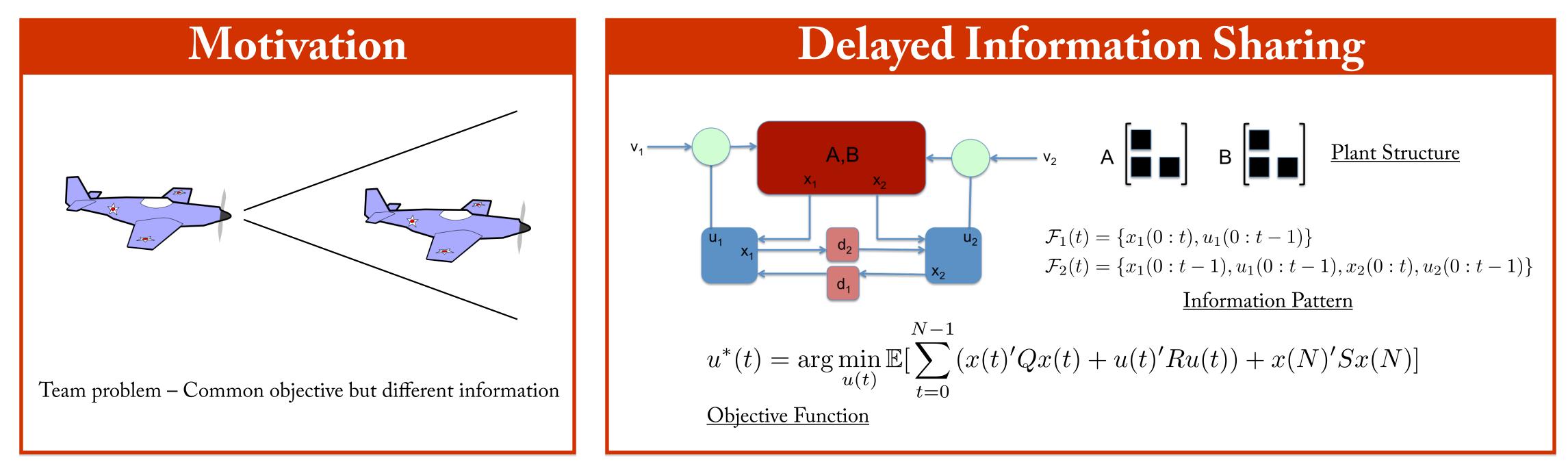
Ming Hsieh Department of Electrical Engineering

School of Engineering

Decentralized Control for Asymmetric Information Sharing Patterns

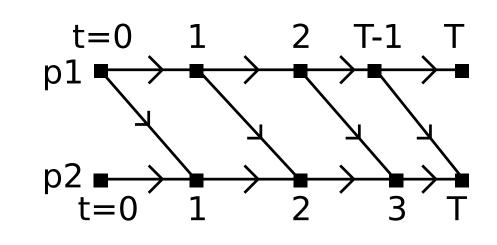
Naumaan Nayyar, Dileep Kalathil, Rahul Jain



Linearity

Statistics

d ₁	d ₂	Literature	Comments
0	0	Classical LQR	No plant restrictions
1	1	Kurtaran, Sandell, Yoshikawa	No plant restrictions
1	1	Lamperski and Doyle	A B B
∞	0	Lall et al.	A $\begin{bmatrix} \bullet & \bullet \end{bmatrix}$ B $\begin{bmatrix} \bullet & \bullet \end{bmatrix}$
1	0	Our previous work	No plant restrictions
Current work: $(\infty, 1)$			



Partially nested structure

i's information is affected by j's decision => j's information is subset of i's information

Sufficient condition for existence of linear optimal control law

 $\mathcal{H}_i(t) = \{x_i(0:t-1), u_i(0:t-1)\}$ Observation history

 $\hat{x}(t) := \mathbb{E}[x(t)|\mathcal{H}_1(t)]$ $\hat{\hat{x}}(t) := \mathbb{E}[x(t)|\mathcal{H}_1(t), \mathcal{H}_2(t)]$ **Statistics**

$$\overline{x}(t) = \begin{bmatrix} \hat{x}_1(t) \\ \hat{x}_2(t) \end{bmatrix}$$

<u>Summary statistics</u> – compress space of laws

Optimal Control Law

$$u^{*}(t) = \begin{bmatrix} F_{11}^{*}(t) & 0\\ 0 & F_{22}^{*}(t) \end{bmatrix} \begin{bmatrix} x_{1}(t) - \hat{x}_{1}(t)\\ x_{2}(t) - \hat{x}_{2}(t) \end{bmatrix} - \begin{bmatrix} K_{11}(t) & K_{12}(t) & 0\\ K_{21}(t) & K_{22}(t) & J(t) \end{bmatrix} \begin{bmatrix} \hat{x}_{1}(t)\\ \hat{x}_{2}(t)\\ \hat{x}_{2}(t) \end{bmatrix}$$

 $F^{*}(t)$ is optimal gain matrix, obtained as a solution to a deterministic convex optimization problem

K(t) and J(t) are solutions to algebraic Riccati equations

Future Work

Extended to partial output feedback

Multiple-unit delays

Stochastic games

www-scf.usc.edu/~nnayyar nnayyar@usc.edu

Ming Hsieh Institute Ming Hsieh Department of Electrical Engineering

Presented at Allerton 2013 and submitted to ACC 2014