Ming Hsieh Department of Electrical Engineering

School of Engineering

Making UWB Positioning Robust to Multiuser-Interference (MUI)

Vinod Kristem, Andreas F Molisch, S Niranjayan, Seun Sangodoyin **Communication Sciences Institute**

- No central controller to coordinate transmissions
- Delay critical applications: Battlefield, Disaster rescue

• Early false detection from Interference MPCs Miss detection of weak signal MPCs

-	T_{f}	$= N_c T$, c								
	2	3	4	1	2	3	4	1	2	3	4
	s ar	e as:	siane	ed un	iaue	chip	seau	ience	S C₽	(n)	
r _c ser Rei	s ar	e as: er or	signe Ily kr	ed un nows	ique the c	chip chip-s	sequ seque	ience ence	es c _k (of th	(n) e des	sired u
ser Rec	s ar ceive -Hop	e as er or oping	signe nly kr g give	ed un nows es pro	ique the c	chip chip-s sing (sequ seque gain	ience ence	es c _k (of th	(n) e des	sired (
c ier ier ier ier	s ar ceive -Hop awba	e as er or oping acks:	signe Ily kr g give	ed un nows es pro	ique the c ocess	chip chip-s sing (sequ seque gain	ience ence	es c _k (of th	(n) e des	sired u

Time-Hopping Sequences to Combat MUI

Separate Interference/Noise MPC From Signal

Alternate Strategy: Do not Average Across Frames

• Signal MPC in different frames time aligned

- An interference MPC occurs at different locations in different waveforms:
- $c_1(n) c_k(n)$ is different for different *n*

• Odds of noise peak occurring at same location in multiple frames is low

MPC

Consider the set $\{\widehat{h_n}(\tau), 1 \le n \le N\}$

- If τ is a signal MPC: Most values are similar.
- If τ is an interference MPC: Several values are zero.
- Non- zero values are distinct.

Proposed Algorithm Principle

- Extract impulse responses from N waveforms $\{\widehat{h_n}(\tau), 1 \leq$ $n \leq N$
- Loop over all MPC locations τ_k
 - Construct the set $\{\widehat{h_n}(\tau_k), 1 \le n \le N\}$
 - Declare τ_k as a signal MPC if there is a cluster of \overline{N} points around $\widehat{h_k}(\tau_k)$
- Reconstruct the interference waveform and subtract its contribution
- · Average the waveforms to suppress noise and any weak residual interference

• Proposed scheme robust to number of interfering users and the strength of interference

Outdoor LOS/NLOS Measurements

Proposed ranging scheme Proposed ranging scheme (RMSE = 1.3431m)(RMSE = 2.0827m)Thresholding scheme1 Thresholding scheme1: 0.8 0.8 Genie (RMSE = 1.0795m) Genie (RMSE = 5.9353m) Thresholding scheme2: Thresholding scheme2: · Lookup table Lookup table 0.0 CDF 0.6 (RMSE = 1.3412m)(RMSE = 17.1249m) 0.4 0.4 0.2 No Interference 1 = 1 $-10^{2} - 10^{1} - 10^{0} - 10^{-1} 10^{-2} 0 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} - 10^{2} - 10^{1} - 10^{0} - 10^{-1} 10^{-2} 0 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}$ Ranging Error (meters) Ranging Error (meters) | = 4 0.8 0.8 l = 7 0.0 CDF 0.6 0.4 Proposed ranging scheme 0.4 Proposed ranging scheme (RMSE = 2.2018m) (RMSE = 2.1613m) Thresholding scheme1 Thresholding scheme1: Genie Genie (RMSE = 5.0074m) 0.2 (RMSE = 7.6127m)0.2 Thresholding scheme2: Thresholding scheme2: · Lookup table Lookup table (RMSE = 28.1276m) (RMSE = 29.6587m) $-10^{2} - 10^{1} - 10^{0} - 10^{-1} 10^{-2} 0 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} - 10^{2} - 10^{1} - 10^{0} - 10^{-1} 10^{-2} 0 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2}$

• LOS distance: 20m, 30m, 40m • Virtual 1x4 SIMO for small scale fading • Antenna heights: 10cm and 100cm

• No interference: Thresholding schemes are better • With MUI: Proposed scheme is robust

• Proposed scheme robust to number of interfering users

• Proposed scheme even outperforms genie

Ming Hsieh Institute Ming Hsieh Department of Electrical Engineering

Supported by ONR and DURIP