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Abstract—A passive subharmonic generation and frequency
downconversion method using a memoryless nonlinear circuit
coupled to a linear passive resonator is presented. The frequency
downconverter can be used to transfer the energy from a high-fre-
quency signal to a lower frequency without requiring any dc power
supply. In the synchronous mode, the passive downconverter acts
as a self-powered frequency divider. The characteristics of the
self-powered frequency downconverter have been studied analyt-
ically, and design tradeoffs have been shown for the specific case
of a cross-coupled differential pair nonlinearity. As an example,
a low-frequency prototype is implemented with discrete compo-
nents. Analytical results and design procedures are verified in
discrete and integrated prototypes.

Index Terms—CMOS, frequency conversion, frequency divider,
nonlinear circuits, oscillators, subharmonic generation.

I. INTRODUCTION

P ASSIVE frequency downconverters and subharmonic
generators can transfer the energy from a high-frequency

source to a lower frequency without dc power consumption.
They can be particularly useful in low power and batteryless
RF integrated systems.
It is well known that when a signal is passing through a

nonlinear and/or time-varying system, harmonics of the signal
are generated at the output, irrespective of the input signal
amplitude. However, in order to generate the subharmonic of
the signal at the output, the input amplitude or power needs
to be larger than a certain threshold. This is a known fact in
frequency dividers such as injection-locked or regenerative
frequency dividers. The main known technique for a passive
frequency division is parametric frequency downconversion
and division in which a subharmonic frequency is generated
by exciting a nonlinear circuitry with memory or reactance
(usually a varactor). These reactances transfer the energy from
an ac source to the load and are capable of transferring power
from one frequency to another. The downconversion using
a reactive element was first observed and reported by North
[1]. Later on in 1956, Manley and Rowe presented a general
set of equations that relates the average powers at different
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frequencies in an ideal nonlinear reactance, independent of
the nonlinearity shape [2]. The operation principles and re-
quirements of parametric subharmonic oscillation using the
semiconductor varactors have been described in [3]. Since
then, there have been several designs on parametric frequency
dividers implemented on printed circuit board (PCB) using
discrete components [4]–[11]. There have been a few recent
publications that demonstrate integrated RF parametric fre-
quency dividers and downconverters in a CMOS technology
[12]–[14]. Subharmonic oscillations are also known in acoustic
systems, where by applying a strong electric excitation greater
than a certain threshold, subharmonics or fractional harmonics
of the applied frequency are generated. As an example, such
subharmonics have been observed and reported in quartz plates
[15]–[18].
In this paper, a new method for passive subharmonic gen-

eration, utilizing a memoryless nonlinear core coupled to a
linear passive resonator, is proposed in which the energy of a
RF source transfers to a lower frequency without consuming
dc power. This lower frequency can be synchronized to the
frequency of the input source, enabling realization of a passive
frequency divider. Section II illustrates the concept and the
operation principle. Section III shows the derivation of the
downconverter properties using nonlinear analysis, which is
applied to an LC-tuned cross-coupled topology. Section IV
demonstrates a few design examples. Specifically, a 130-nm
CMOS integrated 12-GHz passive divide-by-2 is demonstrated
[19]. Section V concludes this paper.

II. FREQUENCY CONVERSION USING
MEMORYLESS NONLINEAR CIRCUITS

Memoryless nonlinear circuits combined with linear passives
can be configured to generate frequencies that are different than
the input frequency without the need for a dc power supply or
consuming dc power. In other words, some or all of the energy
of an input drive can be transferred to generating and sustaining
new frequencies that may be synchronous or asynchronous with
respect to the input frequency.
Consider the circuit shown in Fig. 1(a). A dc supply voltage,
, biases the transistors by supplying a dc current through

them. With a large enough dc current, the small-signal conduc-
tance looking into the cross-coupled transistors becomes more
negative than the LC resonator loss, i.e., . This
causes an oscillation startup, and ultimately, a steady-state sinu-
soid at the frequency of the LC resonator is sustained due to the
nonlinearity of active devices.
Now, consider the circuit in Fig. 1(b) where the dc voltage

supply is replaced with an ac sinusoidal voltage source at
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Fig. 1. (a) Negative resistance oscillator. (b) Proposed passive subharmonic
generator using memoryless nonlinear circuitry.

Fig. 2. Input/output voltage waveforms when MHz and
MHz ); H, , and pF. A

zoomed version is shown in the inset.

frequency . We will show that, under the right conditions,
this circuit can generate a steady-state sinusoidal output at fre-
quency . In fact, we will show that there is no need
for dc current through the transistors to generate this output
(Section IV-C). Output frequency can be independent of
the input frequency (asynchronous operation) or a subharmonic
of the input frequency (synchronous operation).
Fig. 2 shows a representative simulation of the circuit in the

synchronous mode where . We hypothesize that
the voltage waveform across a high quality factor resonator pri-
marily contains frequency , the resonant frequency of the
passive LC. Since the input signal at frequency is applied to
a common mode of this circuit, we further hypothesize that the
single-ended voltages across this circuit can be written as

(1)

where and are the differential and common mode voltage
amplitudes, respectively, and is the phase angle between the
two signals. The collector currents in the bipolar junction tran-
sistors (BJTs) can then be expressed as

(2)

where is the saturation current of the identical BJTs and is
the thermal voltage. The exponential of a cosinusoidal function
can be expressed as [20]

(3)

where is the modified Bessel function of the first kind and
order . Since modified Bessel functions of odd (even) order
are odd (even) functions of their argument [20], the differential
current across the active circuitry can be written as

(4)

where and are the normalized
common mode and differential voltages, respectively. In order
to simplify the analysis, we consider the synchronous mode
and assume that , where is an integer number.
Therefore, can be derived as

(5)

where only odd terms of and should be
considered. Now, we can find the equivalent input admittance
of the the active circuitry at frequency by taking the ratio
of the differential current component at to the differential
voltages as

(6)

where is assumed for simplicity. It is easy to see that
since the modified Bessel functions are positive for posi-

tive arguments. Intuitively, this negative conductance enables
starting and sustaining steady-state oscillation at . This in-
tuitive reasoning will be concretely substantiated in Section III.

III. ANALYSIS

This section covers the analysis and simulation results of the
passive frequency conversion scheme of Fig. 2.
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Fig. 3. (a) Self-powered downconverter with state-variables. (b) Second-order
model for the downconverter.

A. Formulation and Analytical Approach

Let us assume , , , and represent the single-ended
output voltages and inductor currents, respectively [see
Fig. 3(a)]. The input signal is also . Neglecting
base currents in the BJTs, the following equations can be
written:

(7)

Taking the independent state variables as ,
, and , the set of differential equations for the

system is

(8)

where is a time-varying nonlinear function vector
given by

(9)

Thus, the dynamics of the circuit is described by a third-order
nonautonomous nonlinear differential equation, where the dif-
ferential voltage and current depend on the common-mode
current . Some simplifying assumptions will be made in order
to solve this equation, the validity of which will be verified with
simulations, and ultimately, measurements.
Assuming zero initial conditions for the inductor and capac-

itor, at , and are equal to the common mode input

voltage. Therefore, at , ,
and thus,

(10)

For , while the differential voltage is still small, we
assume that the common mode voltage, , and common mode
current, , remain approximately intact. With the approximate
solution for , the differential equations in (8) simplify to

(11)

where . Thus,
the dynamics of the circuit is governed by a second-order nonau-
tonomous nonlinear differential equation. In this case, the cir-
cuit can be modeled as an RLC tank with the capacitor voltage
and inductor current ( and ) as state variables and a non-
linear time-dependent current source that represents
the differential current in the transistor pair [see
Fig. 3(b)].
In order to derive the transient waveforms, quasi-harmonic

approximation is used, where the transient and steady-state ex-
pressions for the voltage and current waveforms are assumed
to resemble sinusoids with slowly time-varying amplitude
and phase as [21]

(12)

and . The quasi-harmonic approximation is
valid as long as the RLC quality factor is reasonably large. By
taking the derivatives of and in (12) with respect to time
and replacing them in the original equation [see (11)], the fol-
lowing first-order differential equations for and are
obtained:

(13)

where

(14)

In order to convert the above nonautonomous differential
equations to autonomous ones (i.e., remove explicit time depen-
dency), the equations are averaged over one oscillation period,
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Fig. 4. Transient behavior of the circuitry for: (a) V and (b)
V.

. Since the amplitude and the phase are slowly
varying functions of time over the oscillation period, they are
assumed to be constant in the averaging process. Therefore, the
averaged differential equations for and are given by

(15)

In steady state, the amplitude and phase variations should be
zero, i.e., and . Fig. 4(a) shows the numerical
solution of (15) using MATLAB and the simulated transient
voltage waveform using Spectre for the differential voltage
when V. Fig. 4(b) shows the same graphs when

V. Analysis and transient simulations consistently
show growth and sustaining of a sinusoidal differential voltage
for large input amplitudes, and zero differential output for
small input voltages. Throughout this section, the BJT model
used for calculations and simulations is PBR951 UHF wide-
band transistor with fA and . All the
simulations and calculations are performed for H
and pF, corresponding to a tuned frequency of
approximately 2.64 MHz, and , corresponding to the
inductor quality factor of 13 at 2.64 MHz.

B. Startup Condition—Synchronous Mode

In this section, we find the minimum required input ampli-
tude that causes growth of differential output voltage. To
find a closed-form formula for the startup condition, the
function in (15) is approximated with the first two terms of its
Taylor-series expansion, i.e., . To simplify
the analysis, we also assume that the input frequency is an in-
teger multiple of output frequency, i.e., , where is

an integer. The following averaged autonomous nonlinear dif-
ferential equations for the amplitude and phase can be found
for different values of .
1) :

(16)

2) :

(17)

3) :

(18)

4) and :

(19)

By definition, the amplitude and phase variation should be
zero in the steady state, i.e., and . Stability analysis
of steady-state solutions offers the following startup condition
for the batteryless driven nonlinear circuit of Fig. 3 (details in
the Appendix):

(20)

Since , requires the minimum
to satisfy the startup condition. Furthermore, for ,

the startup condition remains constant for all values of .
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Fig. 5. Minimum required input power for startup when versus: (a) resonator quality factor , (b) resonator capacitance , and (c)
BJT saturation current .

Fig. 6. Minimum required input power for startup versus
when .

Oftentimes, it is desirable to find the circuit startup condi-
tion and other properties in terms of input power instead of
input voltage swing. In the synchronousmode, the average input
power is

(21)

where is the largest period in the system. At startup and for
small differential voltage, , the common-mode current is
given by (10). In this case, the input power is simplified to

(22)

Equations (20) and (22) can be combined to find the minimum
input power necessary to start a growing oscillation at

. Fig. 5(a) shows the calculated and Spectre sim-
ulated minimum required input power for startup versus
resonator quality factor for ; higher resonator re-
laxes the startup condition. Fig. 5(b) shows versus res-
onator capacitance, . For this simulation, the of the tank
is kept constant at . Resonators with smaller re-
quires lower for startup oscillation. This may be intuitively
expected as, for the same , smaller capacitor corresponds to
larger effective parallel resistance for the resonator. Fig. 5(c)
shows versus BJT saturation current . For this simula-
tion, only the parameter in the model file of the BJT transistor
PBR951 has been changed. The minimum required input power
reduces as increases corresponding to a steeper re-
sponse and a smaller for the BJTs. Fig. 6 shows
versus for . As predicted by the calcula-
tions, requires the minimum , and as increases,

Fig. 7. Normalized minimum required input power for startup
versus resonator quality factor ( ).

stays almost constant. Finally, Fig. 7 shows the ratio of
at to at versus . This ratio is approx-

imately 2, suggesting that the minimum required input power to
start a synchronous output at for is 3 dB
more than that for , nearly independent of the quality
factor.

C. Steady-State Solutions—Synchronous Mode

Nonzero steady-state amplitude and phase solutions
in the synchronous mode, i.e., the integer, are
found by setting and in (15). Fig. 8(a) and (b)
shows the variation of the steady-state amplitudes as ,
and therefore, varies for and two different inductor
values. As can be seen, by increasing increases

smoothly (power/current limited region) and saturates at a
specific value where it does not increase by increasing input
power (voltage limited region). Since in deriving (15), we have
assumed that has a relatively small amplitude, the calcu-
lation is not valid at large output swing values. As expected
intuitively, oscillators with higher also requires smaller
to achieve a certain output swing. Fig. 8(c) shows the variation
of the steady-state amplitudes as varies for two different
resonator capacitance , while and . With
smaller , larger output swing for the same input power is
achieved.
The output power is defined as the power delivered to ,

the total parallel resistance of the tank (Fig. 1)

(23)
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Fig. 8. Variation of the steady-state amplitudes as varies for MHz when: (a) , (b) , and (c) pF and pF.

Fig. 9. Variation of the power efficiency as varies for MHz when: (a) , (b) , and (c) pF and pF.

Fig. 10. Variation of the power efficiency versus for mV and
mV when .

This resistor captures the resonator loss, represented by
, as well as any explicit load resistance. In an

ideal case, the resonator should be lossless and the load resis-
tance, to which the power is intended for delivery, is the only
contributor to . As such, all the references to the resonator
quality factor are intended for the loaded quality factor. The
power transfer efficiency can be derived as

(24)

Fig. 9(a) and (b) shows power efficiency versus for
and two different inductor values. We can observe that, in the
power/current limited region, power efficiency increases as
increases. However, in the voltage-limited region, the efficiency
drops by increasing , since the output voltage is almost con-
stant. Higher also results in higher efficiency. Fig. 9(c) shows
power efficiency versus for two different resonator capaci-
tance . Lower capacitance results in higher power transfer ef-
ficiency. Fig. 10 shows power efficiency versus for different

input voltage swing levels where is assumed to be an integer
number. The circuitry shows the highest efficiency at . As
increases, the efficiency does not change and it is almost half

of the efficiency at .

D. Effect of Detuning and Locking Range

In practice, the passive resonator frequency may not be
exactly equal to an integer frequency of input frequency, i.e.,

. In this section, we derive the maximum
frequency detuning for which the circuit still operates in the
synchronous mode, i.e., it produces an output frequency that
is exactly equal to , where is an integer number. Let
us assume , where is an integer
and represents the frequency detuning. For ,
the output waveform may have different behaviors. At small
input voltage levels, as is detuned from integer values, the
oscillation amplitude decreases until it dies [see Fig. 11(a)]. As
the input amplitude increases, by detuning , the oscillation
amplitude decreases until it goes out of the locking range
where it has an asynchronous oscillation with amplitude much
smaller compared to the integer [see Fig. 11(b)]. As input
amplitude increases more, by detuning , the oscillation ampli-
tude does not change, saturated at approximately the maximum
value; however, as it goes out of the locking range, it has an
asynchronous oscillation with negligible change in the peak
amplitude [see Fig. 11(c)].
Now we want to find the detuning range or the locking range.

If the output signal is synchronized with the input signal, its
frequency will be equal to . For , we
assume that (16)–(19) can still represent the average equations
for the system. In this case, and represent
the steady-state locking condition.
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Fig. 11. Different scenarios for the oscillator output signal, when it is detuned
more than it can tolerate at different : (a) , (b) , and (c) , where

. Zoomed versions are shown in the respective insets.

The detailed analysis is going to be shown for . In this
case, there are two fixed points, . The first one is

(25)

corresponding to oscillator dying down [see Fig. 11(a)]. To find
the stability of this fixed point, the averaged equation is lin-
earized around the fixed point. In this case, the eigenvalues of
the linearized equation are

(26)

If is an integer number , will equal 0. As in-
creases, and the input frequency is further detuned from ,
goes to the first or fourth quadrant [see (25)]. As an example,

Fig. 12 shows the phase portrait of the circuitry around the stable
point at different values of for and mV.
Since in first and fourth quadrants, , consequently,

. Thus, to find the locking range in this case, we only
need to find the condition where stays negative. In this case,
the locking range equals

(27)

when . Thus, in this case, by de-
tuning more than derived in (27), the startup condition
will not be satisfied and oscillation will be stopped.

Fig. 12. Phase portrait of the circuitry around the stable point at different values
of : (a) , (b) , (c) , and (d) for
and mV.

For the other fixed point, we have at the edge
of locking; thus, and . Therefore,
the second fixed point is

(28)

corresponding to asynchronous oscillations [see Fig. 11(b)].
Thus, the locking range equals

(29)

In this case, by detuning more than derived in (29), the
oscillator goes out of locking range and it shows asynchronous
oscillation. As mentioned above, at the edge of these two re-
gions, we have

(30)

Fig. 13 shows the input power at the edge of the oscillation
dying and pulling versus . For this calculation, maximum
is derived from (30) and then replaced in (22) to find .
Fig. 14(a) shows the locking range versus the input power
for and . The calculation uses (27) and (29) for
each region. Since the model in not valid when the output
voltage saturates, (29) cannot predict the locking range accu-
rately in that case. Fig. 14(b) shows the locking range versus
the input power for two different tank capacitance , while

MHz and . Since lower capacitance
requires lower power for oscillation, it provides higher locking
range with smaller input power.
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Fig. 13. Input power at the edge of oscillation dying and pulling versus tank
quality factor .

Fig. 14. Locking (tuning) range versus input power at for: (a)
and and (b) pF and pF.

Following the same above-mentioned procedure, the locking
range for in the two regions equals

(31)

For , only oscillation pulling happens by detuning . The
reason is that for . Therefore, the locking range
limited by the oscillation pulling is

(32)

Fig. 15. Locking (tuning) range versus input power at and for
.

Fig. 16. Simulated minimum required input power for startup versus:
(a) and (b) nMOS channel width at ; (c) the steady-
state amplitudes , and (d) locking (tuning) range versus at and

.

Fig. 15 shows the locking range versus the input power for
and when . For and ,

since , detuning does not have any effect on the oscillation
frequency. Therefore, the circuit will show an asynchronous os-
cillation and the output signal cannot lock to the input signal
(basically the locking range is zero).

E. MOSFET Nonlinear Core

In Sections III-A–III-D, the nonlinear core is assumed to con-
sist of BJT transistors. The exponential I–V characteristic of BJT
eases the analysis and enables derivation of closed-form expres-
sions from which intuition can be gained. In this section, we
briefly discuss the effect of using MOSFET transistors in the
nonlinear core. The I–V characteristic of MOS transistors is not
as well behaved, especially as transistor enters different opera-
tion regions (e.g., saturation, triode) throughout the large-signal
operation. However, based on the simulation results, the circuit
function does not depend on the exact nonlinear function. The
simulations are done for the same schematic shown in Fig. 3(a),
except that the BJT transistors are replaced with nMOS transis-
tors in a 0.13- m CMOS technology. The same passive devices
have been used ( H, pF, , corre-
sponding to a tuned frequency of approximately 2.64 MHz and
of 13 at 2.64 MHz). Fig. 16(a) shows the minimum required
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Fig. 17. Measurement setup for the low-frequency prototype.

Fig. 18. Measured single-ended and differential output waveforms when:
(a) and (b) .

Fig. 19. Measured, simulated, and calculated: (a) minimum required input
power for subharmonic generation versus the input frequency,
(b) locking (tuning) range, (c) output amplitude, and (d) power efficiency
versus input power at .

input power for the startup versus with nMOS size
of m nm. Similar to the case where BJT
devices have been used, requires the minimum input
power and as increases, is relatively constant and ap-
proximately 3 dB more than . Fig. 16(b) shows
versus the width of the MOS transistor when channel length

Fig. 20. Measured output waveforms when the downconverter is pulled for
at: (a) and (b) , where . Zoomed versions are

shown in the respective insets.

Fig. 21. (a) Detailed schematic and (b) chip microphotograph of the integrated
12-GHz divide-by-2 self-powered divider.

is nm and . Again, we see that larger tran-
sistors and smaller threshold voltages are beneficial as they re-
duce the minimum input power requirement. also shows
stronger dependence on the device size at small device sizes.
Fig. 16(c) shows the steady-state amplitude versus , when

m nm for in comparison with the
BJT case.1 Fig. 16(d) shows the locking range versus the input
power, which is very close in both the BJT and CMOS cases.

1The circuitry with this size of nMOS transistor requires the same as
a circuitry using a BJT with fA.
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Fig. 22. Measured and simulated: (a) (return loss), (b) sensitivity curve, and (c) measured versus the transistor bulk voltage.

IV. IMPLEMENTATION AND MEASUREMENT RESULTS

In this section, measurements results for discrete and inte-
grated prototypes verifying the analytical claims are presented.

A. Discrete Frequency Downconverter

To experimentally demonstrate the generation of various sub-
harmonic signals in the synchronous operation mode and verify
the corresponding locking ranges, the configuration shown in
Fig. 2 is implemented. The BJTs and passives are the same used
in calculations and simulations (the BJT transistor is PBR951,

H, and pF). The measurement setup is de-
picted in Fig. 17. For the measurements, a high input-impedance
oscilloscope (Tektronix TDS2024C) has been used; therefore,
no output buffer was required. Since there is no matching cir-
cuitry at the input, directional couplers have also been used to
extract the value of the input power that goes into the circuitry.
Representative measured single-ended and differential output

waveforms of the circuit for and
are shown in Fig. 18(a) and (b), respectively. As expected,
each single-ended signal has both the input frequency
and output frequency components. Fig. 19(a) shows the
measured, simulated, and calculated minimum required input
power for subharmonic generation (not necessarily
synchronous) versus the input frequency. As expected, dividing
by 2 requires the minimum input power, and as
frequency increases, almost a constant input power is required.
As predicted before, the difference in for and

is about 3 dB. The measured, simulated, and calculated
locking range for versus the input power is depicted
in Fig. 19(b). The differential output amplitude and power
efficiency are shown in Fig. 19(c) and (d), respectively. A of
6 is assumed for the simulation and calculation to match to the
measurement results. As an example, the measured differential
output voltages during the circuit pulling at two different input
power levels for are also shown in Fig. 20.

B. Integrated 12-GHz Divide-by-2 Self-Powered Divider

As shown before, division-by-2 requires lowest input power
and also provides highest efficiency. In order to demonstrate
the applicability of this technique at higher frequencies, an
integrated 12-GHz divide-by-2 circuitry is designed and fabri-
cated in a 0.13- m CMOS technology with eight metal layers
(Fig. 21). As mentioned in Section IV-A, smaller threshold
voltage for the switching pair transistors relaxes the startup

Fig. 23. Measured phase noise of the signal generator and the 12-GHz divider
output.

condition; therefore, triple-well transistors have been used with
positive bulk voltage to reduce the threshold voltage. The bulk
and -well of the transistors have also been floated with a large
resistance (1.1 M ) to reduce the parasitic capacitance. The
input at 12 GHz is matched to 50 using the ladder
network. From simulations, the loss of the matching circuitry
network at 12 GHz is about 2 dB, while the of the resonance
tank at 6 GHz is approximately 15. An open-drain output buffer
has been placed after the divider to facilitate measurements.
The -well and bulk voltages are kept at 1.5 and 0.5 V, re-

spectively. Fig. 22(a) shows the small-signal input reflection co-
efficient when dBm. The measured and simu-
lated sensitivity curves (locking range) are shown in Fig. 22(b);
the minimum required input power is about 2 dBm, while the
locking range is approximately 1 GHz at dBm.
Fig. 22(c) shows themeasured versus the bulk voltage. As
the bulk voltage increases, the threshold voltage of the nMOS
transistors reduces; thus the input power for startup also reduces.
Fig. 23 shows the measured phase noise of the signal generator
(Agilent E8257C) and the 12-GHz divider output. Table I sum-
marizes the performance of this 12-GHz divider in comparison
with other recent reported passive and active dividers.

C. Effect of a DC Block on the Divider Performance

The simulated single-ended voltage and transistor current
waveforms in the 12-GHz divider are shown in Fig. 24(a). The
current waveform is asymmetric with respect to time so it has a
dc component. This dc current helps the circuitry to satisfy the
startup condition easier since smaller ac current (and therefore,
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TABLE I
PERFORMANCE COMPARISON AMONG DIFFERENT PASSIVE AND ACTIVE DIVIDERS

Fig. 24. (a) Simulated single-ended voltage and transistor current waveforms.
(b) Measured maximum/minimum generated dc current in the 12-GHz divider.
(c) Measured sensitivity curve with/without dc block at the input.

smaller ) will be required for oscillation. The presence of
the dc current in the system equations has also been shown in
the previous sections . Fig. 24(b) shows the measured
maximum and minimum generated dc current in the 12-GHz
divider. However, the functionality of the frequency divider
does not depend on the existence of the dc current in the circuit.
To prove this, a dc block is placed in series with the input (the
dc port of the bias-tee is floated now). Fig. 24(c) shows the
measured sensitivity curve before and after using the dc block.
The circuit functions with and without dc current. However,
the performance of the circuit degrades significantly when the
dc current is blocked. Strangely, in the case of low-frequency
discrete prototype, the circuit does not function when the dc
current is blocked. This is against our expectation and still not
understood.

Fig. 25. Alternative configuration for the proposed passive subharmonic
generator without any dc power supply and their representative inpu/output
waveforms. (a) Differential cross-coupled oscillator with tail transistor

MHz . (b) Differential noise-shifting Colpitts oscillator
MHz [25].

V. CONCLUSIONS AND DISCUSSIONS

This paper presents a passive frequency downconverter to
transfer energy from a higher frequency source to a lower fre-
quency, which can be a subharmonic of the input source, without
consuming dc power. In the proposed technique, a memoryless
nonlinear core coupled to a linear passive resonator is exploited
for frequency downconversion. While all analysis, designs, and
experimental results correspond to the cross-coupled differen-
tial pair active core, the principles are general and applicable to
other similar circuits as well. Fig. 25 shows the proposed bat-
teryless passive subharmonic frequency generation schemewith
alternative nonlinear cores, along with their representative sim-
ulated input/output waveforms.
The major motivation for this study is to enable battery-

less systems that must extract energy from electromagnetic
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emissions. Extracting power from higher RF frequencies is
advantageous from the antenna size standpoint. However, the
main challenge with high-frequency power harvesting is the
low RF-to-dc power conversion efficiency of most rectifiers.
For example, a reported millimeter-wave power harvesting
system shows the RF-to-dc conversion efficiency of around
1.2% for the rectifier at 45 GHz, including the losses of the
on-chip matching network [26]. Efficient batteryless subhar-
monic generation followed with an efficient low-frequency
rectifier may result in a more efficient solution for high-fre-
quency power harvesting.

APPENDIX A

In this appendix, detailed analysis to find the startup condi-
tion for the case is presented. First, the fixed points or the
solutions to the simplified averaged differential equations [see
(16)] are found. In order to analyze the stability of these solu-
tions, the eigenvalues of the Jacobean matrix [see (33)] should
be evaluated at each fixed point

(33)

The nonzero fixed points are

(34)

The first solution, , , has the following
eigenvalues:

(35)

Therefore, , and is either a saddle
point or an unstable point, depending on the value of .
However, , will be a saddle point if

(which provides
the startup condition); otherwise, it is a stable point. This is
when the startup condition is not satisfied.

The second solution in (34) exists only when
, in which case both of the fol-

lowing eigenvalues will be negative:

(36)

Consequently, this will be a stable steady-state solution when
. The eigenvalues

corresponding to the third solution in (34) are

(37)

which corresponds to a saddle point if
and to an unstable point

otherwise.
Therefore, if , the

second fixed point is the stable solution, satisfying the startup
condition; otherwise, becomes the stable point. It should
be mentioned that the above fixed points are valid for small
values of amplitude, due to the approximation in the

function, which is suitable for the startup condition.
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