Ming Hsieh Department of Electrical Engineering

School of Engineering

Statistical Structure Learning of Smart Grid for Detection of False Data Injection

Hanie Sedghi and Edmond Jonckheere

Motivation and Introduction

- Phasor Measurement Units (PMUs)
 - Synchronous with GPS stamp
 - Various applications
 - Will be placed partially along with State Estimators

Problem Formulation

Gaussian Markov Random Field

$$f_X(x) \propto exp[-\frac{1}{2}x^T J x + h^T x]$$

$$J(i, j) = 0 \iff (i, j) \notin E$$

$$E(X_i | X_{N(i)}) = E(X_i | X_{-i})$$

DC power flow equations

Structure Learning

Conditional Covariance Test (Anandkumar et.al. 2012)

Estimates the structure of underlying graphical model given i.i.d. samples of the r.v.s

Algorithm 1 Algorithm $CCT(\mathbf{x}^n; \xi_{n,p}, \eta)$ for structure learning using samples \mathbf{x}^n .

Initialize $\widehat{G}_p^n = (V, \emptyset).$ For each $i, j \in V$, if

 $\min_{\substack{S \subset V \setminus \{i,j\} \\ i \in \mathcal{I}}} |\widehat{\Sigma}(i,j|S)| > \xi_{n,p},$

then add (i, j) to \widehat{G}_p^n . Output: \widehat{G}_p^n .

Detection Scheme

- Decentralized scheme
- > Online calculations
- > Markov graph changes under attack
- Mismatch alarm
- > All attack scenarios > MATPOWER for running DC power flow ➢ IEEE 14-bus system & IEEE 30-bus system \geq 100% detection rate,
- 100 90 80 70 % .⊆ 60 50 40 30 20 No. of measurement

Ming Hsieh Institute

Ming Hsieh Department of Electrical Engineering

Detection Rate for IEEE 14 bus syster

$z^{a} = z + a = H(X + d) = HX^{a}$ $\Sigma(X^{a}, X^{a}) = H^{-1}[\Sigma(P, P) + \Sigma(a, a)]H^{-1T}$ $\Sigma(X^{a}, X^{a}) \neq \Sigma(X, X)$	for IEEE-14 and 50 for IEEE- 30. Reason: sparsity	Detection rate is 90% for just 30 corrupted samples Considering current sampling rate these values are pretty good.
--	---	---

Discussion & Future Work

- The first detection scheme for this sophisticated attack
- \succ Computational complexity $O(p^{\eta+2})$
- > Sample complexity $\Omega(J_{min}^{-2} \log p)$
- > Apply to bigger networks Readily detects other types of attack > Causality approach with time series analysis