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Introduction Biological Swarming

In Nature I

“Swarm behavior, or swarming, is a collective behavior exhibited by
animals of similar size which aggregate together, perhaps milling
about the same spot or perhaps moving en masse or migrating in

some direction.”
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Introduction Biological Swarming

In Nature II

Examples of biological swarming are found in bird flocks, fish
schools, insect swarms, bacteria swarms, quadruped herds

Several studies have been made to explain the social behavior
which different groups of animals exhibit1,2.

A common understanding is that in nature there are attraction and
repulsion forces between individuals that lead to swarming behavior

1K Warburton . and J. Lazarus. “Tendency-distance models of social
cohesion in animal groups.” In: Journal of theoretical biology 150.4 (1991),
pp. 473–488.

2D. Grunbaum, A. Okubo, and S. A. Levin. “Modelling social animal
aggregations”. In: Frontiers in theoretcial Biology: Lecture notes in

biomathematics. Springer-Verlag, 1994.
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Introduction Swarm Robotics

Swarm Robotics

From a robotic perspective, swarm behavior is the collective
motion of a large number of self-propelled entities3.

The key points of swarming robotics are:

Focuses on a large number of simple autonomous agents,

Achieving an aggregation through local simple interaction,

An emergent global behavior arises from local interactions,

Can provide high robustness and flexibility.

3O J O’Loan and M R Evans. “Alternating steady state in one-dimensional
flocking”. In: Journal of Physics A: Mathematical and General 32.8 (1999),
p. L99.
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Introduction Swarm Robotics

Aggregation (in space)

Consider a team of n agents, the team is said to be showing an
aggregative behavior if the following holds:

lim
t→∞

‖xi (t)− xj(t)‖ ≤ 2 γ, ∀ i , j ∈ 1, . . . , n (1)

with γ the aggregation radius.
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Introduction Swarm Robotics

Related Work

Several works can be found in the literature about swarm robotics:

Veysel Gazi and Kevin M. Passino. “A class of attractions/repulsion
functions for stable swarm aggregations”. In: International Journal of
Control 77.18 (2004)

Wei Li. “Stability Analysis of Swarms With General Topology”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38.4
(2008), pp. 1084–1097

D.V. Dimarogonas and K.J. Kyriakopoulos. “Connectedness Preserving
Distributed Swarm Aggregation for Multiple Kinematic Robots”. In: IEEE
Transactions on Robotics 24.5 (2008), pp. 1213 –1223. issn: 1552-3098

V. Gazi and K.M. Passino. Swarm Stability and Optimization. Springer
Berlin Heidelberg, 2011. isbn: 9783642180415
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Introduction Swarm Robotics

Contributions

The following major contributions have been made:

The design of two swarm aggregation algorithms with input
saturations and local interactions

A theoretical analysis of the converge properties of the
proposed interaction rules

An experimental validation of the proposed control laws with
a team of robotic platforms
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Introduction Swarm Robotics
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Swarm Robotics Passino et. al.

Modeling - I

Consider the following dynamics for each agent i :4

ẋi =

n∑

j=1,j 6=i

g(xi − xj), ∀i = 1, . . . , n (2)

with the interaction function:

g(·) : Rd → R
d

Observations:

The robot-to-robot interaction is described by a fully
connected graph G(V ,E ).

4Veysel Gazi and Kevin M. Passino. “A class of attractions/repulsion
functions for stable swarm aggregations”. In: International Journal of Control
77.18 (2004).
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Swarm Robotics Passino et. al.

Modeling - II
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Swarm Robotics Passino et. al.

Interaction Function

The interaction function can be defined as follows:

g(y) = −y [ga(‖y‖)− gr (‖y‖)] , ∀y ∈ R
d . (3)

where:

The term ga(‖y‖) is the attraction component

The term gr (‖y‖) is the the repulsion component.

Observations:

The interaction function is odd, namely g(y) = −g(−y).
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Swarm Robotics Passino et. al.

Interaction Functions - Assumptions

Assumption 1 (A1):There exists a unique distance δ at which
ga(δ) = gr (δ) and the following holds:

ga(‖y‖) ≥ gr (‖y‖) for ‖y‖ ≥ δ

gr (‖y‖) > ga(‖y‖) for ‖y‖ < δ.
(4)

Observations:

The vector y defines the alignment,

The term y ga(‖y‖) is the actual attraction,

The term y gr (‖y‖) is the actual repulsion.
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Swarm Robotics Passino et. al.

Interaction Function - An Example I
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Swarm Robotics Passino et. al.

Interaction Function - An Example II
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Swarm Robotics Passino et. al.

Swarm Aggregation Properties

The main properties of model (2) are:

P1 The barycenter x̄ of the swarm is stationary over time.

P2 The swarm converges to an equilibrium state.

P3 The swarm converges to a bounded region.

P4 The swarm reaches the bounded region in finite time.
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Swarm Robotics Passino et. al.

How to generalize this model?

The model proposed by Passino et. al. possibly represents the first
mathematical characterization of the cohesive behavior observed in

nature by groups of animals.

How could this model be generalized?

Local interaction restricted by limited visibility radius,

Time-varying interaction between pair of agents,

Asymmetric interaction due to actuator saturations.
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Swarming Algorithms First Control Law

Aggregation - I

Let us consider the following dynamics for each mobile robot i :

ẋi(t) = k

∑

j∈Ni (t)
g(xi (t)− xj(t))

1 +
∥
∥
∥
∑

j∈Ni (t)
g(xi (t)− xj(t))

∥
∥
∥

, (5)

where:

k is the saturation gain (k = 1 in the sequel for simplicity),

g(·) is the interaction function as in Passino et. al.,

Ni(t) is the time-varying neighborhood of agent i ,

1 +
∥
∥
∥
∑

j∈Ni (t)
g(xi (t)− xj(t))

∥
∥
∥ is the normalization factor.
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Swarming Algorithms First Control Law

Aggregation - II

The aggregation dynamics (5) has the following characteristics:

The proximity graph encoding the interactions among the
robots is time varying,

Robots only interact within their visibility range,

The control law is saturated to better comply with the
actuators capabilities,

An external connectivity maintenance control term might be
required.
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Swarming Algorithms First Control Law

Properties

Compared to the Passino et. al. algorithm, the aggregation
dynamics (5) exhibits the following properties:

The barycenter of the swarm is no longer stationary over time

The swarm converges to an equilibrium state.

The swarm converges to a bounded region.

The swarm approaches the bounded region in finite time.
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Swarming Algorithms First Control Law

Equilibrium State Existence

Assumption 2 (A2): There exist functions Ja(‖y‖) : R
+ → R

+

and Jr (‖y‖) : R
+ → R

+ such that:

∇y Ja(‖y‖) = y ga(‖y‖)

∇y Jr (‖y‖) = y gr (‖y‖)
. (6)

Theorem: Consider a swarm of robots whose dynamics is
described by (5) under A1, A2. Then the swarm reaches a steady
state configuration for any given initial condition.
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Swarming Algorithms First Control Law

Equilibrium State Existence - Proof Sketch I

Consider the following (generalized) Lyapunov candidate:

V (t) =
1

2

∑

(i ,j)∈E(t)

(

Ja(‖y‖) − Jr (‖y‖)
)

(7)

Time derivative is:

V̇ (t) =

n∑

i=1

(∇xiV (t))T ẋi(t). (8)

By construction, we have:

∇xiV (t) = −
1

f (xi (t))
ẋi (t), (9)

with f (xi (t)) =
1

1+‖
∑

j∈Ni (t)
g(xi (t)−xj (t))‖

∈ (0, 1].
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Swarming Algorithms First Control Law

Equilibrium State Existence - Proof Sketch II

Substituting (9) in (8), we obtain:

V̇ (t) = −
n∑

i=1

1

f (xi (t))
‖ẋi (t)‖

2 ≤ 0. (10)

Using LaSalle’s Invariance Principle, it follows that as t → ∞
the state x(t) converges towards the largest invariant subset
of the set where V̇ (t) = 0, that is:

Ωe = {x : ẋ(t) = 0}. (11)

Since Ωe is made of equilibrium points, the thesis follows.
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Swarming Algorithms First Control Law

Cohesive Behavior

Assumption 3 (A3): The norm of the total attractive vector is
bounded below by a linear function:

‖y‖ga(‖y‖) ≥ a‖y‖. (12)

Assumption 4 (A4): The norm of the total repulsive vector is
bounded:

‖y‖gr (‖y‖) ≤ b. (13)
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Swarming Algorithms First Control Law

Cohesive Behavior

Assumption 5 (A5): Graph G(t) remains connected at all times,
with

λ2(Lf ,G(t)) ≥ λ⋆
2 > 0, ∀ t > 0 (14)

with Lf ,G(t) the weighted Laplacian matrix related to f (ei (t))
whose elements are defined as:

Lij
f ,G(t) =







∑

j∈Ni (t)
f (ei ) if i = j ,

−f (ei ) if j ∈ Ni(t),

0 otherwise

(15)

The following technique can be used to ensure A55:

A. Leccese, A. Gasparri, L. Sabattini, and G. Ulivi. “On the Decentralized
Connectivity Maintenance of Bounded Swarm Aggregation Control
Laws”. Submitted to the 52nd IEEE Conference on Decision and Control
(CDC 2013), 2013

5A minor fix is required to deal with the asymmetry of the Laplacian matrix.
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Swarming Algorithms First Control Law

Cohesive Behavior

Theorem: Consider a swarm of robots whose dynamics is
described by (5) under A1-A5. Then the swarm converges to the
following bounded region:

Br =

{

x ∈ R
d : ‖x − x̄‖ ≤

b

a

(n − 1)

λ⋆
2

}

. (16)

with x̄(t) = 1/n
∑n

i=1 xi (t) the actual barycenter of the swarm.

Observations:

The convergence radius depends on the attractive and
repulsive design parameters

The convergence radius depends on the algebraic connectivity
of the network topology
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch I

Consider the following Lyapunov candidate:

V (t) =
1

2

n∑

i=1

ei (t)
T ei (t), (17)

with ei (t) = xi(t)− x̄(t) the distance between the agent i and
the barycenter at time t.

The time derivative is:

V̇ (t) =

n∑

i=1

eTi ėi =

n∑

i=1

eTi (ẋi − ˙̄x) =

n∑

i=1

eTi ẋi

︸ ︷︷ ︸

V̇1

−
n∑

i=1

eTi ˙̄x

︸ ︷︷ ︸

V̇2

.

(18)
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch II

Let us first analyze the second term V̇2:

V̇2 =

n∑

i=1

eTi ˙̄x =

(
n∑

i=1

eTi

)

˙̄x = 0T ˙̄x = 0. (19)

Observations:

The motion of the barycenter does not affect the size of the
bounded region of convergence,

The motion of the barycenter only affects the location of such
a bounded region of convergence.
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch III

Let us now analyze the first term V̇1. Let us denote
ḡ(‖ei − ej‖) = ga(‖ei − ej‖)− gr (‖ei − ej‖).

V̇1 =

n∑

i=1

eTi ẋi

=

n∑

i=1

eTi

∑

j∈Ni (t)
−(xi − xj) ḡ(‖xi − xj‖)

1 + ‖
∑

j∈Ni (t)
−(xi − xj) ḡ(‖xi − xj‖)‖

(20)

By recalling that xi − xj = ei − ej , we obtain:

V̇1 =

n∑

i=1

f (ei ) e
T
i

∑

j∈Ni (t)

−(ei − ej )ḡ(‖ei − ej‖). (21)
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch IV

By denoting the attractive and repulsive terms, respectively as

ha(‖ei − ej‖) = ga(‖ei − ej‖)f (ei )

hr (‖ei − ej‖) = gr (‖ei − ej‖)f (ei )
(22)

we have:

V̇1 = −
n∑

i=1

eTi

∑

j∈Ni (t)

(ei − ej)ha(‖ei − ej‖)

︸ ︷︷ ︸

V̇a

+
n∑

i=1

eTi

∑

j∈Ni (t)

(ei − ej)hr (‖ei − ej‖)

︸ ︷︷ ︸

V̇r

(23)
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch V

For the term V̇a according to A3, it follows:

V̇a = −
n∑

i=1

eTi

∑

j∈Ni (t)

(ei − ej) ha(‖ei − ej‖)

≤ −a

n∑

i=1

eTi f (ei )
∑

j∈Ni (t)

(ei − ej)

≤ −a eTLd
f ,G(t)e

(24)

where:
Ld
f ,G(t) = Lf ,G(t)⊗ Id (25)

with ⊗ the Kronecker product and Lf ,G(t) the weighted
Laplacian matrix related to the term f (·).
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch VI

It follows that:

V̇a ≤ −a eTLd
f ,G(t)e

≤ −aλ2(Lf ,G(t))‖e‖
2

≤ −aλ2(Lf ,G(t))

n∑

i=1

‖ei‖
2,

≤ −aλ⋆
2

n∑

i=1

‖ei‖
2, ∀ e /∈ span{1⊗ ξ1, . . . , 1⊗ ξd}

(26)
Observation:
If e ∈ span{1⊗ ξ1, . . . , 1⊗ ξd} ⇒ then all the robots are on
the same location, that is x1 = x2 = . . . = xn, which actually
should never happen! ;-)
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch VII

For the term V̇r according to A4, it follows:

V̇r =
n∑

i=1

eTi

∑

j∈Ni (t)

(ei − ej) hr (‖ei − ej‖)

≤
n∑

i=1

‖ei‖
∑

j∈Ni (t)

‖ei − ej‖ f (ei )
b

‖ei − ej‖

≤
n∑

i=1

‖ei‖ f (ei ) b |Ni(t)|

≤
n∑

i=1

‖ei‖ f (ei ) b (n − 1)

≤
n∑

i=1

‖ei‖ b (n − 1).

(27)
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch VIII

By combining the obtained results we have:

V̇1 = V̇a + V̇r

≤ −a λ⋆
2

n∑

i=1

‖ei‖
2 +

n∑

i=1

‖ei‖ b (n − 1)

≤ −
n∑

i=1

[

‖ei‖
(

aλ⋆
2‖ei‖ − b (n − 1)

)]

(28)

Thus V̇1 is negative definite if the following holds:

‖ei‖ ≥
b

a

(n − 1)

λ⋆
2

, ∀ i ∈ V. (29)
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Swarming Algorithms First Control Law

Cohesive Behavior - Proof Sketch IX

Therefore, the bound on the maximum ultimate swarm size is:

‖x − x̄‖ ≤
b

a

(n − 1)

λ⋆
2

, x ∈ R
d . (30)

thus proving the statement.

Observation: If the graph is fully connected then it can be proven
that λ2(LG) = λ⋆

2 = n. The previous equation becomes:

‖x − x̄‖ ≤
b

a

(n − 1)

n
≤

b

a
, (31)

that is the same bound as in Passino et. al.
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Swarming Algorithms First Control Law

Time Convergence

Theorem: Let us consider a swarm of robots whose dynamics is
described by eq. (5) under A1-A5. Then the swarm moves
arbitrarily close to the bounded region Br in finite-time tf , that is:

tf ≤ −
1

2ϑ a λ⋆
2

ln

(
ξ2

2V (0)

)

, (32)

with ξ defined as follows:

ξ = (1 + η)
b

a

(n − 1)

λ⋆
2

, (33)

where η =
ϑ

1− ϑ
with ϑ ∈ (0, 1).
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Swarming Algorithms First Control Law

Time Convergence - Proof Sketch I

Let us consider again the Lypaunov function:

V (t) =
1

2

n∑

i=1

ei (t)
T ei (t) (34)

From the previous analysis, we have:

V̇ (t) ≤ −aλ⋆
2

n∑

i=1

‖ei‖
2 + b (n − 1)

n∑

i=1

‖ei‖

≤ −(1− ϑ+ ϑ) a λ⋆
2

n∑

i=1

‖ei‖
2 + b (n − 1)

n∑

i=1

‖ei‖

≤ −ϑ aλ⋆
2

n∑

i=1

‖ei‖
2 −

n∑

i=1

‖ei‖
[
(1− ϑ) a λ⋆

2 ‖ei‖ − b (n − 1)
]

(35)
with 0 < θ < 1.
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Swarming Algorithms First Control Law

Time Convergence - Proof Sketch II

If the following condition holds:

‖ei‖ ≥
1

(1− ϑ)

b

a

(n − 1)

λ2,min
= ξ (36)

Then, the time derivative V̇ (t) can be bounded as:

V̇ (t) ≤ −ϑ a λ⋆
2

n∑

i=1

‖ei‖
2

≤ −2ϑ a λ⋆
2 V (t).

(37)

Thus, the swarm moves arbitrarily close to the bounded region
in finite time:

tf ≤ −
1

2ϑ a λ⋆
2

ln

(
ξ2

2V (0)

)

. (38)
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Swarming Algorithms First Control Law

What should be next?

Compared to the Passino et. al. formulation we introduced:

input saturations for the actuators,

limited visibility for the robot-to-robot interaction.

What else can be done?

ensure robot-to-robot collision-free interaction,

consider an environment with obstacles,

consider asymmetric input saturations,

derive tighter bounds w.r.t. the number of agents
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Swarming Algorithms Enhanced Control Law

Swarming Algorithms

Enhanced Control Law
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Swarming Algorithms Enhanced Control Law

Aggregation Dynamics - I

Let us consider the following dynamics for each mobile robot i :

ẋi =

∑

j∈Ni (t)

γij g(xi − xj)

∑

j∈Ni (t)

γij
, (39)

where γij is the weighting factor between a pair of neighboring
robots i and j defined as:

γij =
1

‖xi − xj‖α
, with α ≥ 1. (40)
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Swarming Algorithms Enhanced Control Law

Aggregation Dynamics - II

The aggregation dynamics (39) has the following characteristics:

The proximity graph encoding the interactions among the
robots is time varying,

Robots only interact within their visibility range,

The control law is saturated to better comply with the
actuators capabilities,

The saturation for the feedforward and backward velocities
can differ,

The interaction is ensured to be collision-free.
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Swarming Algorithms Enhanced Control Law

Interaction Function

For the proposed dynamics, the attraction and repulsion functions
are defined as follows:

ga(‖y‖) = a (1− Φ(‖y‖)),

gr (‖y‖) = bΦ(‖y‖),
(41)

Assumption 6 (A6): A generalized function Φ(·) : R → R

satisfies:

• ‖x‖ ≤ ‖y‖ ⇒ Φ(‖x‖) ≤ Φ(‖y‖)

• lim‖y‖→0 Φ(‖y‖) = 1,

• lim‖y‖→∞Φ(‖y‖) = 0.
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Swarming Algorithms Enhanced Control Law

Interaction Function: An Example

As an example of generalized function Φ(·), let us consider:

exp

(

−
‖y‖β

c

)

with β ≥ 1 and c > 0,

sech
(
−‖y‖β

)
with β ≥ 1.
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Swarming Algorithms Enhanced Control Law

Steady State Existence

Assumption 7 (A7): There exist the following functions
Ja(‖y‖) : R

+ → R
+ and Jr (‖y‖) : R

+ → R
+ such that:

∇yJa(‖y‖) =

(
1

‖y‖

)α
y

‖y‖
ga(y)

∇yJr (‖y‖) =

(
1

‖y‖

)α
y

‖y‖
gr (y)

. (42)

Theorem: Consider a swarm of robots whose dynamics is
described by eq. (39) under A1, A6 and A7. Then the swarm
converges to an equilibrium state for any initial condition.
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Swarming Algorithms Enhanced Control Law

Assumption

Assumption 8 (A8): The graph G(t) remains connected all the
time with:

λ̂2(L̂(t)) ≥ λ̂⋆
2 (43)

where L̂ the error Laplacian matrix whose elements are defined as:

l̂ij =







∑

j∈Ni (t)

γij
wi

‖ei − ej‖
, j = i

−γij
wi

‖ei − ej‖
, j ∈ Ni(t)

0 otherwise.

(44)

and:
γi =

∑

j∈Ni (t)

γij > 0. (45)
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Swarming Algorithms Enhanced Control Law

Cohesiveness Analysis

Theorem: Let us consider a swarm of robots whose dynamics is
described by eq. (39) under A1, A6-A8. Then the swarm moves
towards and remains within a bounded region:

Br =

{

x ∈ R
d : ‖x − x̄‖ ≤

1

λ̂⋆
2

(

1 +
b

a

)}

. (46)

Observations:

The convergence radius depends on the attractive and
repulsive design parameters

The convergence radius depends on the algebraic connectivity
of the network topology
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Swarming Algorithms Enhanced Control Law

Time Convergence

Theorem: Let us consider a swarm of robots whose dynamics is
described by eq. (39) under A1,A6-A8. Then the swarm moves
arbitrarily close to the bounded region Br in finite-time tf , that is:

tf ≤ −
1

2ϑ a λ̂⋆
2

ln

(
ξ2

2V (0)

)

(47)

with ξ defined as follows:

ξ = (1 + η)
1

a λ̂⋆
2

(

1 +
b

a

)

, (48)

where η =
ϑ

1− ϑ
with ϑ ∈ (0, 1).
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Swarming Algorithms Enhanced Control Law

Obstacle Avoidance Integration I

The key idea is to represent an obstacle as a virtual robot in
the neighborhood of the detecting robot,

Collisions are prevented thanks to the presence of the
weighting factors γik .
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Swarming Algorithms Enhanced Control Law

Obstacle Avoidance Integration II

The closer the robot xi moves to the virtual robot xk
(obstacle), the larger the term γik = 1

‖xi−xk‖α
becomes.

The control term due to the interaction with the virtual robot
becomes more relevant, thus preventing a collision
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Algorithm Validation

Algorithm Validation
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Algorithm Validation

Overview

To validate the proposed swarm aggregation algorithm several
simulations along with experiments were carried out.

Simulations were conducted to investigate the scalability with
respect to the number of robots

Experiments were performed to analyze the effectiveness in a
real context against not-modeled factors such as noisy
measurements.

Ming Hsieh Institute (USC) – Andrea Gasparri Swarm Aggregation Algorithms for Multi-Robot Systems 56 / 63



Algorithm Validation Simulations

Video

The following generalized function and parameters were used the
control law in (39), i.e.:

Φ(‖y‖) = exp

(

−
‖y‖4

0.02

)

γi =
1

‖xi − xj‖3
[−a, b] = [−4, 0.4]
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Algorithm Validation Experiments

SAETTA Team - Overview

Team of low-cost mobile robotic platforms developed at the
Robotic Lab of the Engineering Department of the

University “Roma Tre”
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Algorithm Validation Experiments

SAETTA Platform - CPUs

The SAETTA platform has a two-levels architecture

Low-level

– Microcontroller (PIC18F87J50)

– Time-constrained Tasks

– Main Control Loop at 40Hz

Higl-level

– Pandaboard (1GHz Cortex-A9)

– High-level Tasks

– Main Control Loop at 4Hz
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Algorithm Validation Experiments

SAETTA Platform - Equipment

Sensors:
– Accelerometer – Magnetometer – Gyroscope – Infrared

Communication:

Zigbee
– Standard IEEE 802.15.4
– Baudrate 250Kbps
– Range 100/20m (out/in)
– Low consumption

Wifi
– Standard IEEE 802.11
– Baudrate up to 300Mbps
– Mainly for testing purposes
– Higher consumption
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Algorithm Validation Experiments

Experimental Setup
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Algorithm Validation Experiments

Video
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Any questions?

gasparri@dia.uniroma3.it
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