

School of Engineering

Ming Hsieh Department of Electrical Engineering

A Two-step Technique for MRI Audio Enhancement Using Dictionary Learning and Wavelet Packet Analysis Colin Vaz, Vikram Ramanarayanan, Shrikanth Narayanan Ming Hsieh Department of Electrical Engineering

Motivation	Aurora Digits Results			
 MRI provides a non-invasive method for	 Added MRI noise to clean spoken digits. Allows comparison between clean and			
imaging the vocal tract. Problem: MRI scanners produce high-energy	denoised speech.			
broadband noise.	Clean Aurora digits			

PLCA

Approach

Noisy signal

Wavelets \longrightarrow Denoised signal

Dictionary learning with non-negative matrix factorization (NMF).

 Image: Constraint of the sector of the se

- Separate speech and MRI noise.
- Further signal denoising with wavelets.
 - Analyze signal subbands and reduce noise in noisy subbands.

Metric	Sequence	Proposed	LMS-1	LMS-2
Noise suppression	seq1	30.23	32.55	26.53
(dB)	GR	24.14	27.88	10.91
LLR	seq1	0.17	0.4	0.42
	GR	0.11	0.41	0.33
Distortion	seq1	7.52	34.8	21.4
variance (× 10^{-5})	GR	9.56	35.8	37.7

Listening Test Results

- Presented sets of TIMIT sentences and Aurora digits to listeners.
- Each set contained a noisy audio clip, 3 denoised versions, and a clean version for Aurora.
- Listeners ranked each clip within a set from 1 (best) to 4 or 5 (worst).

Algorithm

TIMIT Results

Environment	Sequence	Clean	Proposed	LMS-1	LMS-2	Noisy
TIMIT	seq1		2	3	1	4
	GR		1	2	3	4
Aurora	seq1	1	3	4	2	5
	GR	1	2	3	4	5

Discussion & Future Work

- Achieved 24 dB noise reduction.
- Low speech distortion: key for speech analysis.
- Improve MRI noise modeling.
- Use time regularization in NMF.
- Implement real-time denoising algorithm.
- Extend idea beyond MRI.

Ming Hsieh Department of Electrical Engineering

We would like to acknowledge the support of NIH Grant DC007124.