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Fundamental Research to Alexa Al Applications

Pretrained models
(BERT, VIT, etc)

Model Compression
for edge devices
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1. Distributed Training 2. Federated Learning
in GPU cluster at the edge



Distributed Training v.s. Federated Learning
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Transformer Models

In the Federated Learning setting, the data is distributed

across millions of devices in a highly uneven fashion. These
) devices have low computational compatibility, significantly

higher-latency, lower-throughput connections

= @] E @ E @ ﬂ --- Federated Learning and Open Problems, Foundations and Trends in Machine

Learning (FnTML) 2021, ..., Chaoyang He, and many Googlers



Distributed Training v.s. Federated Learning

Goals: training large model in reasonable time, energy cost, and
hardware resources to obtain a higher accuracy

Challenge:
1. communication cost
2.  memory constraints
3. computational efficiency
4. straggler/failure

Goals: data and model privacy; mitigate the difficulty of data

centralization; ubiquitous ML in 5G/loT future.
£ a Challenges:

T () 1. data heterogeneity and label deficiency
2. system heterogeneity; resource-constraint; scalability
_— ,@ E @ E @ ﬁ 3. trustworthiness: security, privacy, fairness,
personalization, interpretability, etc



Distributed Training v.s. Federated Learning
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In essence, three methodologies are useful to both:

1. Dynamic system and stochastic ML lead to
complicated interaction between these objectives.
Pioelransformer, ICML 2021

2. On demand: focus on the key demand for
different use cases (ML applications), optimizing
one of the objectives but not deteriorating the

others. FedML Lib and Ecosystem, NeurlPS

2020 FL workshop, Best Paper Award

3. Trade-off among multiple objectives including
accuracy, efficiency, security, and privacy.

Group Knowledge Transfer, NeurlPS 2020




Outline: Distributed ML for Large-scale Models

.I||I. e Part 1: Dynamic Distributed Training

T PipeTransformer: Automated Elastic Pipelining for Distributed
Training of Large-scale Models. ICML 2021
https://DistML .ai

e Part 2: Scalable Federated Learning
[Algorithm] Group Knowledge Transfer: Federated Learning of
Large CNNs at the Edge. NeurlPS 2020

o) [System] FedML: A Research Library and Benchmark for
xn(t) Federated Machine Learning
(Best Paper Award, NeurlPS 2020 FL Workshop)

|
< /@ E@ E@ ﬂ [Diverse Applications]

FedML Ecosystem: Ubiquitous Distributed Training for Diverse Al
Applications at the Edge.
https://FedML .ai
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PipeTransformer: Automated Elastic Pipelining for

Distributed Training of Large-scale Models

O by Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr

In this blog post, we describe the first peer-reviewed research paper that explores accelerating the hybrid of PyTorch DDP
( torch.nn.parallel.DistributedDataParallel ) [1] and Pipeline ( torch.distributed.pipeline ) - PipeTransformer:
Automated Elastic Pipelining for Distributed Training of Large-scale Models (Transformers such as BERT [2] and ViT [3]),
published at ICML 2021.

PipeTransformer leverages automated elastic pipelining for efficient distributed training of Transformer models. In
PipeTransformer, we designed an adaptive on-the-fly freeze algorithm that can identify and freeze some layers gradually during
training and an elastic pipelining system that can dynamically allocate resources to train the remaining active layers. More
specifically, PipeTransformer automatically excludes frozen layers from the pipeline, packs active layers into fewer GPUs, and
forks more replicas to increase data-parallel width. We evaluate PipeTransformer using Vision Transformer (ViT) on ImageNet
and BERT on SQUAD and GLUE datasets. Our results show that compared to the state-of-the-art baseline, PipeTransformer
attains up to 2.83-fold speedup without losing accuracy. We also provide various performance analyses for a more

comprehensive understanding of our algorithmic and system-wise design.

Next, we will introduce the background, motivation, our idea, design, and how we implement the algorithm and system with

PyTorch Distributed APIs.

https://pytorch.orag/blog/pipetransformer-automated-elastic-pipelining/



https://pytorch.org/blog/pipetransformer-automated-elastic-pipelining/

Outline P ICEML e
e Background and Related Works
e Motivation and Ideas
e Overall Design (Animation)
e AutoFreeze: Freeze Algorithm
e AutoPipe: Elastic Pipelining
e AutoDP: Spawning More Pipeline Replicas
e AutoCache: Cross-pipeline Caching
e Experimental Results

e Future Works
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After 2021-06: 100 Trillion?

Transformer Models

The parameter number of deep neural networks (Transformers) is dramatically increasing!
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The cost of Search/Translation models (1/3)
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“Our best quality dense single Transformer model (2.3B
parameters) ... was trained for 235.5 TPU v3 core-years.”

— 2021 paper from openreview.net

* “TPU v3 core”: equivalent to a GPU, uses 100W

2.3B transformer model costs 206,000 kWh...
... takes 236 years to train on one GPU

206,000 kWh equals ...

Driving 2,000 electric cars to another state (300 miles)
Round-trip by 2,000 gas cars to another city (100 miles)

LS .

- !.' § x100miles

2,000 cars

{ @) %236 years

GPU

*Note: This page is from AAAI 2021 Tutorial (https:/sites.google.com/view/aaai-2021-tutorial-ah9/home)
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The cost of Search/Translation models (2/3)

Models re-trained 100s of times before service
- + R&D - test designs
! | * Hyperparameter optimization

| * Upgrade with newer data
(AT w0\ 100x retraining of 2.3B model uses 20 gWh...
|| e ...takes 23.6 millennia to train on one GPU

Feed Forward
FFN

J

20 gWh equals ...
Nx * Round-trip by 200,000 gas cars to another city (100 miles)
T L «  Yearly electricity of 2,000 USA homes

(
Multi-Head
Attention

H —_— , ,
x365 days | 1.@).) x23.6 millennia
retrained 100 times Earees. oo
2,000 homes GPU

*Note: This page is from AAAI 2021 Tutorial (https:/sites.google.com/view/aaai-2021-tutorial-ah9/home)
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The cost of Search/Translation models (3/3)

-

scaled to 175B parameters
retrained 100 times

2.3B is tiny vs. recent models @ Google, OpenAl, ...
* OpenAl GPT3 — 175B parameters
» Google model under open review — 600B parameters

Extrapolating — 100x retraining of 175B model costs 1500 gWh...
...and would have taken 1,800 millennia to train on one GPU
...except you can’t fit 175B parameters on one GPU’s memory!

We can't avoid distributed computing
Yet we need to reduce costs to be realistic & responsible

1500 gWh equals ...
Yearly home electricity of small city (150,000 homes)

“ %365 days || L.@)) x1800 milJ@nia

an entire city GPU Out of Memory!

*Note: This page is from AAAI 2021 Tutorial (https:/sites.google.com/view/aaai-2021-tutorial-ah9/home)
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1. System-wise: Distributed Training System Design and Optimization

Data and Model Parallel Data Inter-Batch: Data Intra-Batch:
ByteScheduler (SOSP’19) PT Pipe
Crossbow (VLDB’19) PT DDP (VLDB’20)
GPipe (NeurlPS’19)
Model Inter-Operator PipeDream (SOSP’19) PT RPC + DDP
PT RPC HetPipe (ATC’20) PT RPC + Pipe
TF + gRPC (EuroSys’19) Parallax (EuroSys’19)
BytePS (OSDI'20)
Model Intra-Operator FlexFlow (MLSys’19)
Mesh-TF (NeurlPS’18) GPT-3 (NeurlPS’20)

TouFu (EuroSys’19) ZeRO/DeepSpeed (SC’20)
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Pipeline Parallelism Hybrid of Data Parallelism and Pipeline Parallelism
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Model Parallelism

Intra-layer and inter-layer model parallelism.
https://FlexFlow.ai
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2. ML-wise: Model Architecture and Training Algorithm

1)

2)

3)

4)

Architecture Optimization Manually: :
LinFormer (AAAI'2021, Best Paper Award) i

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Automated Architecture Design:
Neural Architecture Search: FBNet (CVPR’ 2019, 400+ citations)

L
Spare Training: pruning, quantization, etc
Lottery Ticket Hypothesis (ICLR 2019, Best Paper Award) D pd
Progressive Training @ u
oI N En g
SGD-based Distributed Optimization: @ ® © @

LARS (ICLR 2020): Large Batch Optimization for Deep Learning: Training BERT in 76 minutes
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1. (Sys) Distributed Training System 2. (ML) Model Architecture and Training Algorithm

. Pro:

Pro: s
.- Improve the efficiency mathematically, fundamentally

Efficiency in Computation/Communication/Memory

Con:
: 1. Lack of system design to amplify the algorithmic advantages ;
2. the model-wise optimization is not friendly to distributed training

- Con:
- View the model/SGD optimization as black box

What if we co-design?

Hybrid of Pipeline and Data Parallelism 1.  Progressive Training
2, ynamic Neural Networks

\ (https://arxiv.org/pdf/2102.04906.pdf)

Elastic Distributed Training System!



Progressive Training

TO (0% trained) T1 (35% trained) T2 (75% trained) T3 (100% trained)

Layer (during training)

Layer (end of training) Layer (end of training) Layer (end of training)

Layer (end of training)

Similarity score

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Freeze Training [1]
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Algorithm 1 Progressive stacking
M}, < InitBERT(L/2F)
My < Train(M{)) {Train from scratch. }
fori < 1tokdo
M < Stack(M;) {Doubles the number of layers.}
M; < Train(M]) {M; has L/2* " Tayers.}
end for
return M

Progressive Stacking [2]

[1] Freeze Training: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. NeurlPS 2017

[2] Efficient Training of BERT by Progressively Stacking. ICML 2019

[3] Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping. NeurlPS 2020. Minjia Zhang
[4] On the Transformer Growth for Progressive BERT Training. NACCL 2021
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Pipeline Parallelism Hybrid of Data Parallelism and Pipeline Parallelism

Key observations when applying progressive training (e.g., freeze training) to the above training systems:
1. The computation cost becomes unbalanced in pipeline-parallelism

2. The memory cost is reduced gradually

3. The communication cost among DP workers should be reduced gradually
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“Hi, PipeTransformer, —-[ “Pipeline Transformation for Transformer Models”
[ T e e e e ]—‘ Transformer Models for NLP (BERT) and CV (ViT) J

4. AutoCache: Cross-process caching

1. Freeze Algorithm
) Cache .
Active Layers Frozen Layers Active Layers Frozen Layers Active Layers F rozen Layers

2. AutoPipe: Elastic pipelining 3. AutoDP: Spawnlng More Pipeline Replicas

The process of PipeTransformer’s automated and elastic pipelining



PipeTransformer Animation

Transformer Models (ViT, BERT, etc)

PipeTrans fo rme r[ - ﬁ ﬁg —/" “ Transformer Encoder

Pipeline Parallelism (pipe 0, global rank 0)
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PipeTransformer Animation

Transformer Models (ViT, BERT, etc)
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Pipeline Parallelism (pipe 0, global rank 0)
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Pipeline Parallelism (pipe 0, global rank 8)
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GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7



PipeTransformer Animation

Transformer Models (ViT, BERT, etc)

T -
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“translate English to German: That is good." |
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Pipeline Parallelism (pipe 0, global rank 0) Pipeline Parallelism (pipe 1, global rank 1)
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PipeTransformer Animation

Transformer Models (ViT, BERT, etc)
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PipeTransformer Animation

Transformer Models (ViT, BERT, etc)

Frozen Training

PipeTransformer

“translate English to German: That is good." ]
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PipeTransformer Animation

Transformer Models (ViT, BERT, etc)
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PipeTransformer Animation

Transformer Models (ViT, BERT, etc)
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pipeline 0 at timestep 1 Pipeline 1 at timestep 1
e e o , ol Y .
) fialial sl +fg] | [}l -l e ]
ipeli i dd ipeli
I_E"_Fl‘?"_’l?_o_?l }l_nj_e:%EgF_)_Q _________________________ a_l__Piayv__pllpe s — Freeze + AutoPipe + AutoDP + AutoCache — Freeze + AutoPipe + AutoDP
n m m n m m i — Freeze + AutoPipe + AutoCache — No Freeze (baseline)
Redistibute | N [T 35
dataset :
AutoCache Throughput (samples/second)
(cross process) AutoDP 6000 3.01 2.83x
Sample training Transform 2.51 2.27x
information as indicator # of frozen layer Pipeline length 4000 2.0 4
(Progress, gradient, etc) changed? has been changed?
1.5 1 1.26x
2000f 1.0x 0.95x
Freeze notify torne 1.0
Alggrlthm , § : , 0 : 2 i 6 éepoch 0.5
| Data Distributed Parallel || Pipeline Parallel | | Shared Memory (a) Sample Throughput  (b) Speedup Ratio Comparison
- — - : (Cross process)
| Deep Learning Training Engine (PyTorch) | : . .
| CUDA I NocoL/Gloo | | Multi Processing Figure 9. Speedup Breakdown (ViT on ImageNet)

Figure 3. Overview of PipeTransformer Training System

https://DistML.ai
https://chaoyanghe.com/pipetransformer/
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Freeze Algorithm

TO0 (0% trained) T1 (35% trained) T2 (75% trained) T3 (100% trained)

Layer (during training)

Layer (end of training)  Layer (end of training) Layer (end of training) Layer (end of training)

Similarity score

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Freeze algorithm
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AutoPipe: Elastic Pipelining

(1) Basic Usage of PyTorch Pipeline

L Fo | B.
0SS
F. B.
i -
Device 3 F, I B: F.
i 1 = Time
Device 2 F. }* - B:
i i (b)
Device 1 Ei— B} Fao | Fas | Faz | Fas| Baa | Baz | By
i |
: . Fao | Far | Faz | Fas B B
Device 0 Fo - B, T
~ — Fio|Fis Fiz|Fis Bis
AN o [z e Bubble
Gradients
(a) (c)

# Step 1: build a model including two linear layers
fcl = nn.Linear(16, 8).cuda(@)
fc2 = nn.Linear(8, 4).cuda(1)

# Step 2: wrap the two layers with nn.Sequential
model = nn.Sequential(fcl, fc2)

# Step 3: build Pipe (torch.distributed.pipeline.sync.Pipe)
model = Pipe(model, chunks=8)

# do training/inference
input = torch.rand(16, 16).cuda(@)
output_rref = model(input)

B.

Bos

Update

Update

Update

PLilF

Update

ICML

International Conference
On Machine Learning

Nlez

USC University of

Southern California



AutoPipe: Elastic Pipelining

(1) Pipeline Partitioning Strategy

Intermediate output

partition k-2 v partition k-1 partition k

+|ﬂ i [acation > [
Multi-Head
Attention

Partition in the middle of skip connection:
the parameter number is balanced, but it requires more communications

Intermediate output

partition k-2 " partition k-1 partition k

3 [additon |+ | ESERNER
Attention

NO Partition in the middle of skip connection:
the parameter number is slightly unbalanced, but it requires less communications

=B ICML =2 USC University of

International Conference ﬁ ﬁﬁ Southern California

On Machine Learning

trade-off of computational
load, communication cost, and
memory consumption among
partitions (each partition is
loaded to one GPU)
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(2) Pipeline Compression

“Hi, PipeTransformer,
What does your name mean?”

Transformer Models for NLP (BERT) and CV (ViT) —-[“Plpellne Transformation for Transformer Models”]

T3 4. AutoCache: Cross- process caching

1. Freeze Algorithm
Active Layers Frozen Layers Active Layers Frozen Layers Active Layers

Frozen Layers

IDP
I@:I@:l.:i@:i&l@:llﬂ l@*l@ﬂlﬂ@ @:1@:!@:1!
112 14 1 5;
............................... \_,/' -
2. AutoPipe: Elastic pipelining 3. AutoDP: Spawning More Pipeline Replicas
(T) (0)

compress the pipeline if My 5, < Map;

T)
where MG( py & max S,
k{0, K—1} %

To avoid extensive memory profiling, the compression algorithm uses the parameter size as a proxy for the training memon
footprint.
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(3) Dynamic Number of Micro Batches

Throughput (samples/second) (When K=8) Pipeline Length (K)

K-1—— K is pipeline length (devices) f——K-1 -—..|
s IR 256 -
GPU3 F3o F3q  F3p  F33 Bgg Bgq Bjp =
M=5 298 ]
= =
GPUz Fao  Faq  Fop i Fa3 T Boo  Bzy Byp Byg ‘= E 6
! M=4 I 340 2
GPU,l Fio Fi1 Fi2 Fia 0 Bio Bi1 Byz Byg l Uy é o] 4
M=3 4 386 5
GPUy Foo  Fo1  Foo Foga Boo Bo1 Boz Bpz Yp ]
M=2 410 €2 2
f——K-1 K-1 —— g
Figure 6. Pipeline Bubble: Fy 4. By, and Uy denote forward " = )
1gure 0. ripeline bu c: an enote forwar T T 0-
8 p d,b> 2d,bs d ’ 200 300 400 500 2 4 8

backward, and the optimizer update of micro-batch b on device

d, respectively. The total bubble size in each iteration is (K — 1) (b) Proﬁling Optimal Chunk Number
times per micro-batch forward and backward cost.

When the pipeline compressed (K becomes smaller), the bubble is shrunk (left figure)

However, we find that the micro-batches size (M) also needs to be adjusted accordingly (right figure shows the optimal M
in different K).
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(4) AutoPipe algorithm: put all together

ICML &

International Conference
On Machine Learning

Algorithm 1 AutoPipe Algorithm

1:

SO® N aUE WD

Input: model F, layer number L and Liozen, pipeline length
K, frozen layer cost factor Afrozen

Return: model Fiozen, model Fpyipe, updated K';

def m_partition (.F, L, Lfrozen) : /fsee3.2.1
-Ft'mzcn = Sequent ial(); model size Sl’mzen =0
Fripe = Sequential () ; per-layer size Spipe = []
for layer index = Lirozen to L do

fA’I'l“i, fMLPi = fi

fp‘.pe.append(fnn); Spipe-append(m_size(farr;))
Fripe-append(fmre;); Spipe-append(m_size( furp;))

. return ]:I‘ruzcn~SI}()zens‘Fpipc~Spipc
11:

12:
13:
14:
15:
16:
17:

def load-balgnce(Fpipe, Spipe, K): //Section 3.2.1
Bp=dict(), Bs=@lict() / balanced L and S
Lussigncd — O; Slnlul o Sum(Spipe)
for partition index  k to K do

mean=Siowul/(K | k);
var=np.var(J pipc[Lussigncd:l)/(K’ -k)
for sublayer ind¢x i = Lagigned t0 Len(Spipe) do

Sy = Spipc[i]
criterion=Bg[i]-Stozen(1.0- Afrozen )+Sk
if criterion < mean + var then
BS+=SL~; BL+=1; Lasaigncd"':l; Slnlal‘zsk
else
break

: return By, Bg
: ]:l'rutcn9Sl'rozen»]:pipcsspipc =m_partition(F,L, Lfiozen)
: while X' > 2 do

Br, Bs = 1load-balance(Fpipe, Spipe, K/2)
BSIO] = Sl'ruz:‘n(] 0- )\I‘rnzen);

A[gP)U =max(Bs) /Equation 2

it M5, <MY}, then

K=K/2

else
break

¢ load Firozen and Fripe to K GPUs using B and By,
: Pipe (Fpipe, chunks= get_optimal_chunks (K))

_V

1.  Atrade-off in Pipeline W\
2. Pipeline compression

3.  optimal micro-batches chunk number (M)

USC University of

Southern California
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pipeline 0 at timestep 1 Pipeline 1 at timestep 1
L TN . Pmmmmmmmmmm e ,
el -fefietle] | =) it i)
1 1 1 1
1 ' 1 1
L e e e ] S TS eSS AR DISTOTTITED i
pipeline 0 at timestep 0 add new pipelines
{ |
i 1
I i 2 e e [ e Tl s 1 B
1
e N ]
Redistribute I— —————— =
datasst AutoCache . rnEe 1
(cross process) I A1Ee] |
Sample training Transform | I
information as indicator # of frozen layer Pipeline length |
(Progress, gradient, etc) changed? I hasbeen changed?
L |
Freeze notify .
Algorithm il AutoPipe
l Data Distributed Parallel ” Pipeline Parallel | Shared Memory

- — - (Cross process)
I Deep Learning Training Engine (PyTorch) |

| CUDA [ NCCL/GLOO | Multi Processing

Figure 3. Overview of PipeTransformer Training System
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“Hi, PipeTransformer, 4 —[“Pipeline Transformation for Transformer Models"]
What does your name mean?”
TO 1. Freeze Algorithm 4. AutoCache: Cross-process caching
T1 ) g T2 T3 sl _Cache |
........Pipeline 0 (server 0) e R P e e o i
1«»4«*4‘, 4c;1o+1a+1o:1o‘ (EENEE . etElEE. eiE - e - ) e
0..1...2..3.; WCHSCESONN 0..1.; WENNRGR'i4. 8l L8070\l W U2 ak 14 05 ek i
DP Pipeline 1 (server 1) bpP DP vvvvvvvvvvvvvvvvvvvvvvvvvv DB R s e oy H v ; : :
lo*iuiotioiic*h*h:iai to*i *iuin’ lezlesiEsiE, . (jEsiE . @i EHE . e e - -
8BP9 10 11 12 13 IRER L9.10 11F 120 13 14, 15} 8.9 L0 Milif2 13 (14150 18 g8 1100 G0 1120 130 D140 138
g arrcn Bvsuqepes
2. AutoPipe: Elastic pipelining 3. AutoDP: Spawning More Pipeline Replicas

Key challenges when adding more pipeline on the fly of training:

1) DDP Communication: Collective communications in PyTorch DDP requires static membership, which prevents
new pipelines from connecting with existing ones;

2) State Synchronization: newly activated processes must be consistent with existing pipelines in the training
progress (e.g., epoch number and learning rate), weights and optimizer states, the boundary of frozen layers, and
pipeline GPU range;

3) Dataset Redistribution: the dataset should be re-balanced to match a dynamic number of pipelines. This not
only avoids stragglers but also ensures that gradients from all DDP processes are equally weighted.
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. message between groups: : 5. %
: 1, progress of tralning [ active training process group

. 2. Pipelining info ] message process group
T

Figure 7. AutoDP: handling dynamical data parallel with messag-
ing between double process groups (Process 0-7 belong to machine
0, while process 8-15 belong to machine 1)

Our idea:
1. creating two process groups. Each process handles one pipeline
2. the active training process group (yellow) handles the training.

=2 USC University of

1Y Southern California

3. the message process group (purple) handles State Synchronization and Dataset Redistribution by messaging

passing between two groups with MPlI communication.
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import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

]

# initialize the process group (this must be called in the initialization of PyTorch DDP)
dist.init_process_group(init_method="tcp://' + str(self.config.master_addr) + ':' +
str(self.config.master_port), backend=Backend.GLOO, rank=self.global_rank, world_size=self.world_size)

# create active process group (yellow color)
self.active_process_group = dist.new_group(ranks=self.active_ranks, backend=Backend.NCCL, timeout=timedelta(days=365))

# create message process group (yellow color)
self.comm_broadcast_group = dist.new_group(ranks=[i for i in range(self.world_size)], backend=Backend.GL00O, timeout=timede

# create DDP-enabled model when the number of data-parallel workers is changed. Note:

# 1. The process group to be used for distributed data all-reduction.

If None, the default process group, which is created by torch.distributed.init_process_group, will be used.
In our case, we set it as self.active_process_group

# 2. device_ids should be set when the pipeline length = 1 (the model resides on a single CUDA device).

self.pipe_len = gpu_num_per_process
if gpu_num_per_process > 1:
model = DDP(model, process_group=self.active_process_group, find_unused_parameters=True)
else:
model = DDP(model, device_ids=[self.local_rank], process_group=self.active_process_group, find_unused_parameters=True)

# to broadcast message among processes, we use dist.broadcast_object_list
def dist_broadcast(object_list, src, group):
"""Broadcasts a given object to all parties."""
dist.broadcast_object_list(object_list, src, group=group)
return object_list

Southern California

USC University of



AutoCache:

Cross-pipeline Caching

T

o ICML
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On Machine Learning

Caching Daemon

: C Disk storage |\
I CPU Host memory Q

T2 B 2]

1
®@automating * = rb e
the timing of caching L‘7
pipeline 0
(process 0y
1

T2

® Cross process
caching sharing

Qm

newly added pipeline1

(process 1)

Figure 8. AutoCache
!

I
I

Nlez

5

USC University of

Southern California

In this example, the first 3 layers (purple) at two time steps T1 and T2(epochs) are the same computation, so T2 can reuse the

caching from T1.



Experimental Results ‘o ICML 5 USClUnivessiy of

International Conference Southern California

On Machine Learning

1. Overall Speedup

Table 1. Speedup for ViT and BERT Training

Baseline PipeTransformer

Training
time

Training  Training
time Speedup
ImageNet 80.83 +0.05 26h30m 82.184+0.32 9h2Ilm 2.83 x
CIFAR-100 9121 £0.07 35m6s 91.33+0.05 12m23s 244 x
SQuAD 1.1 90.71£0.18 5h7m  90.69£0.23 2h26m  2.10 x

Dataset Accuracy Accuracy

Evaluation on Various datasets and models, including tasks in both CV and NLP.
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2. Breakdown for speedup
— Freeze + AutoPipe + AutoDP + AutoCache — Freeze + AutoPipe + Au
— Freeze + AutoPipe + AutoCache — No Freeze (baseline)

Throughput (samples/second)

6000

4000

1.26x
1.0x 0.95x

2000

(a) Sample Throughput (b) Speedup Ratio Comparison

Figure 9. Speedup Breakdown (ViT on ImageNet)
Key takeaway:
1. the main speedup is the result of elastic pipelining which is achieved through the joint use of AutoPipe and AutoDP

(purple)
2. AutoCache’s contribution is amplified by AutoDP (green v.s. blue: more parallel DP workers can use caching)

3. freeze training alone without system-wise adjustment even downgrades the training speed (yellow)
(the underlying mechanism of PyTorch is not tailored for freeze training, forcing CUDACachingAllocator to split blocks or launch new
memory allocations)
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3. Breakdown for communication v.s. computation

Table 2. Communication Cost v.s. Computational Cost

Overall Communication Computation Communication

Hhatasel Cost Cost Cost Cost Ratio
ViT-Base (87M) ImageNet 9h21m 34m 8h 47m 5.9 %
BERT-large (340M) SQuAD 2h 26m 16m 33s 2h 9m 8.8%

Communication Infrastructure: InfiniBand CX353A where cross-machine bandwidth is 5GB/s, and GPU-to-GPU bandwidth within a machine (PCI 3.0,
16 lanes) is 15.754GB/s.

Key takeaway:
1. Communication cost is not the main bottleneck when we use InfiniBand for medium-scale models (< 500M such as

ViT-base and BERT-large), but it is still non-trivial even under freeze training.
2. Recent progress in NLP and CV has scaled up the model size to billion/trillion-level (GPT-3 - 175B [1], Switch
Transformer - 1.7T [2]), which will make the ratio of communication much higher than our experimental results.

[1] Language Models are Few-Shot Learners. 2020
[2] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. 2021
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4. Performance Analysis

Accuracy Speedup ratio X Throughput (samples/second) (When K=8) Pipeline Length (K) A i
SSPONPNY —— 0000 o m=6 286 =yl Throughput (samples/second)
alpha=2/5 1 3.29 Y2 298 g 6 8007 - No AutoCache
alpha=1/3 4 M=4 340 % - AutoCache (starting from epoch 0)
alpha=1/4 1 M=3 386 § 4 : saar
alpha=1/5 0:9133 B 2.04 M=2 410 g 2 2 a00t
O —— ki ' M-11 368 %, : Bpach
088 089 090 091 092 093 1 2 3 4 200 300 400 500 2 * 8 0 2 4 6 8
(a) Tuning « in Freeze Algorithm (b) Profiling Optimal Chunk Number (c) Timing of Caching

Figure 10. Some Results of Performance Analysis

N\

Optimal chunk number in dynamic pipeline is different.
2. Timing of caching is important.

The trade-off between accuracy and efficiency. 1.

We automate these two optimization strategies.
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Distributed training tasks that can be dynamic:

1. Elastic cloud-based distributed training system

2. Accelerating NAS in extremely large search space
3. Federated AutoML (NAS, HPO)

4. Cross-silo Federated Learning

5. Pruning-based distributed training

6. loT device-based elastic edge training
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Outline: Distributed ML for Large-scale Models

.I||I. e Part 1: Dynamic Distributed Training

T PipeTransformer: Automated Elastic Pipelining for Distributed
Training of Large-scale Models. ICML 2021
https://DistML .ai

e Part 2: Scalable Federated Learning
[Algorithm] Group Knowledge Transfer: Federated Learning of
Large CNNs at the Edge. NeurlPS 2020

o) [System] FedML: A Research Library and Benchmark for
xn(t) Federated Machine Learning
(Best Paper Award, NeurlPS 2020 FL Workshop)

|
< /@ E@ E@ ﬂ [Diverse Applications]

FedML Ecosystem: Ubiquitous Distributed Training for Diverse Al
Applications at the Edge.
https://FedML .ai
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Fundamental Research to Alexa Al Applications

Pretrained models
(BERT, VIT, etc)

Encoder
uuuuuu )
. . ) f
|||' —> Add & Norm b
L [a)
. L] (8}
mm o a

[a)
Feed Forward . X1 (t) o
FEN Model Comprgssmn xo(t
for edge devices

1. Distributed Training 2. Federated Learning
in GPU cluster at the edge



[ Goal: enabling secure collaborative learning at the edge }

Data is born at the
edge

How to learn without data sharing?
L




Introduction: Widely Interdisciplinary

preserving privacy

distributed optimization .
robust to adversarial attack

personalization and non-IID

transfer learning Statistical fairess
un/semi-supervised learning Challenges incentive mechanism
neural architecture search

continual learning/meta learning Federated

Learning

computer vision
communication efficiency natural language processing
computation efficiency System Models and data ming

wireless communication Constraints Applications loT/5G

cloud computing
embedded training system

Conference Venues: NeurlPS, ICML, ICLR, MLSys, CVPR/ICCV/ECCV, ACL/EMNLP, AISTATS, AAAI



System Bottlenecks/Opportunities

Foundations of Algorithm Design

Resource-constrained FL (small edge models,
large server models)

Scalability: 1K users — 1M users

Federated neural architecture search

A  User selection, optimal scaling
[d Heterogeneity, personalization, and fairness
A Unsupervised federated learning

Trustworthy

A Secure and resilient model aggregation
(A Adversarial users (data/model poisoning)
A Leveraging trusted computing environments
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esearch Library and Benchmark for
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[ Paper <[> GitHub Slack Video B Doc

https://www.avestimehr.com/fedml
hitps://FedML.ai
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Overview

¢ FEDML

1. Experiments
2. Applications

| FedML Server (HTTP, MQTT) |

H‘I'I'P/T'CP/'

‘\T'rpfrcp

FedML-Mobile FedML-loT
Android NVIDIA loTs
i0OS RaspBerry Pi

e [ o

[ Decentralized FL || Vertical FL || ... |

______________________________________________________________________________________

FedML-core (low-level APIs)

‘ Topology H Security/Privacy |

|

Worker

Coordinator

‘ ComManager |

+
‘ Send Thread ‘ | Receive Thread |

Abstract Communication Layer

v

MPI || MQTT

Other Backend

Distributed Communication

'

v

Models (LR, DNN), Optimizer

v

On-Client Learning Framework

v

PyTorch

Mobile Training

Training Engine

MAKING COLLABORATION INTELLIGENT

O PyTorch
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FedML System Capability

On-Device Training

| i m i | Mobile, loT (TinyML)
; : 9% I ¥ : O?

| L —ERE-R : <

| — &'“fli@ L o compute node 1 ——pp- | <&

Standalone
Simulation

; FedML [“HTTP/TCP o e

| _—* Server <—’D g
"/77;0/

management _* \D EE

o node  &* = T
Single process e  Multiple-processes in parallel e  Multiple processes with explicit
Runs on any server e  Can be seamlessly distributed across message passing
Good for small models nodes e  Great for resource constrained edge
(LR, 2CNN, Bi-LSTM) e  Train big models (ResNet, MobileNet, devices (Smartphone and loT) - low
And small datasets Efficient Net, Transformer-based) memory, low computational power,
(FMNIST, Shakespeare) e And large datasets (CIFAR10/100, limited communication bandwidth

Google Landmark, COCO, ImageNet) e  Python-centric simplicity



FedML Ecosystem

1 . -
=2 USCUniversity of < FEDN
11V Southern California o el
——C -
< i EXP?::;;":: | FedCV | | FedNLP | | FedMedical | | FedFinance | | | _>
m——2-Applications  ————— ————— ———— —
i | FedML Server (HTTP, MQTT) | i FedML-API (high-level APIs)
i 7 i Model Data
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i | Send Thread | ’ Receive Thread ‘ Modsls {LR, D), Optimizer 1
| v L) v |
i ‘ Abstract Communication Layer ‘ ‘ On-Client Learning Framework ‘ i
i \ i
. wer| marT H Other Backend ‘ | PyTorch | | Mobile Training |
i Distributed Communication Training Engine i

O PyTorch 1 '.'Aa,i:,x



¢ FEDM|
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FedML Ecosystem

FedNLP FedCV

Usty;
Ne rig/
| Wory 3G Th, ,
FedNLP Datasets FL Algorithms:
+ unified interface for various task formulations - FedAVG
+ data partition for simulating realistic dist. - FedOpt ...
l ) J Physiology

EECDLE L 7 N Evaluation and An~ .~
+ Word Embedding + BLSTM-based Models - Trainin~ = - - BBBP
+ BERT-like Pretrained Models (various size) - | }ﬂxgl t

. " 7+ ToxCas

,Luantum Physical BIOnISIES - SDR
~ Mechanics Chemistry it - Cin
« (M7 - (M8 o ESOL « Lipophilicity . PDBbind + MUV
QM7b o QMQ < FreeSolv o BACE

Figure 2: Tasks in different datasets focus on different levels of properties of molecules.
FeaAva

FedGraphNN FedloT




FedNLP

FedNLP Datasets
+ unified interface for various task formulations
+ data partition for simulating realistic dist.

FL Algorithms:

FedAVG
FedOpt ...

!

Base Models for NLP
+ Word Embedding + BLSTM-based Models
+ BERT-like Pretrained Models (various size)

Evaluation and Analysis

Training Dynamics Visualization
Comprehensive analysis

BERT

FedAVG

Input: a sentence/document; Output: a class label.

Task formulations:

i G )

Applications:
- Sentiment Analysis (Positive/Negative/Neutral?)
- Topic Classification (Sports/International/Education/...)

Text Classificatiol
Span Extractiol
Sequence Tagging

Seq2Seq
Languagemik

Input: a document + a question; Output: a span in the doc
Appllcat|ons
Reading Comprehension (Question Answering)

Input: a sentence (a seq of N words); Output: a seq of N tags.

pphcatlons
- Named Entity Recognition

N

Input: an incomplete senten
Output: the original sentence
Applications:

Input: a doc (a seq of N words); Output: a seq of M words.
Applications:
- Dialogue Response Generation
- Summarization
Machine Translation

Domain-Specific LM Pretraining
Auto-Completion of Users’ Input
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Current A in FL ey [Ny
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Figure 1. Our philosophy of federated learning on computer vision: 7777 Fedov T
connecting the algorithmic FL research and CV application-drive Based on FedMLai, the blocks with colors are newly upgraded modules for FedCV

EESESIO with. a8 T e esEarch e Figure 2. Overview of FedCV System Architecture Design
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Figure 2: Tasks in different datasets focus on different levels of properties of molecules.
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Figure 1: Formulation of FedGraphNN (Federated Graph Neural Network)
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Figure 2. Overview of FedGraphNN System Architecture Design




FedGraphNN

Client 1
" Local User-Item Graph

DA%

Local GNN
‘ Centralized User-Item Graph .. >/‘ }\ @O
Pw

\
\
1
1
|
H

i N c@o@wal

1 P

< i Local User-Item Graph GNN
H
i
H
’ 3

I}
!
!
!
!
Server [

Global GNN
r=lu

2R

Client N

(a) Centralized learning. (b) Decentralized learning.

Figure 1: Comparisons between centralized and decentral-
ized training of GNN based recommendation models.

. Graph level. We believe|molecular machine learning

is a paramount application in this setting, where many
small graphs are distributed between multiple edge
devices;

. Sub-graph level. This scenario typically pertains to

social networks or knowledge graphs that need to be

partitioned into many small sub-graphs due to data bar-
riers between different departments in a giant company,
as demonstrated in (Wu et al., 2021).

. Node level. When the privacy of a specific node in a

graph is important, node-level GNN-based FL is useful
in practice. |The IoT getting is a good example (Zheng
et al., 2020);

. Link level is also a promising direction that is relevant

when the privacy of edges (eg: connections in a social
network) is of importance.



FedloT: “Internet of Things & 5G + Federated Learning”

Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders [1]

BASHLITE Mirai . ) D . .
Industrial 5G. The Wireless Do SN Seinend e
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b ¢ & ¢ . Ve

Ultra-Reliable Low-Latency
_ Communication (URLLC)

A Point ccess Poin
o S & DN g §
W Switch \ Q’\“y Switch :“/a AT g
& | & | v A §._ S
route from ‘ - - N
\ ’ \ I original o
o =D &
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Sniffer c&C Scanner + Loader Sniffer Server
(Wireshark) Server (Wireshark)

Fig. 1: Lab setup for detecting IoT botnet attacks

[11 N-BaloT: Network-based Detection of loT Botnet Attacks Using Deep Autoencoders. IEEE PERVASIVE COMPUTING 2018



FedML Community

a3 slack
fedml.slack.com

e #fedml-system 1x Q-2 o O

Add a topic

Our main contribution here is that we provide a re: - Monday, December 7th v 2rs to address so many open problems. The PyTorch Arm
package is just the beginning

@ Threads

We support pytorch 1.4 in IoT devices
Mahdi Chehimi 5:33 P
Hello all,
Can | run the FedML codes with other Pytorch/Tensorflow libraries?
) | Chaoyang He 5:33 P
=3 pyTorch is already supported
as for TensorFlow, you can also customize your trainer like this example shows:

https:/github.com/FedML-Al/FedML/tree/master/fedml_experiments/distributed/fedavg (edited] @ s @ Qs n

5:36 image.png v

fedml-model-and-dataset

fedml-system
by default, the model trainer is None, so we support it with PyTorch implementation

[s) | Chaoyang He 5:37 P
= put you can also define this trainer and follow the abstract APIs defined at: fedml_core/trainer/model_trainer.py
&t @

Lreply 1day ago

[C) Q Search FedMLai @ Q

dml-system

| B I & o & = = E O M@ © 0

5 FEDN

MAKING COLLABORATION INTELLIGENT

Growth Statistics:
Slack Community Users: 640

GitHub Stars: 780
GitHub Forks: 216

GitHub Ranking in “Federated Learning”: 3
(the first two are industry leaders: Tencent/WeBank,
Google)

Short Paper won Best Paper Awards in NeurlPS 2020
SpicyFL Workshop



FedML System Overview

1. Experiments
2. Applications

FedCV | | FedNLP | |FedMedical | |FedFinance| | ... ]

| FedML Server (HTTP, MQTT) |

HTrPfrfy'

‘\TTPNCP

FedML-Mobile FedML-loT
Android NVIDIA loTs
i0OS RaspBerry Pi

FedML-API (high-level APIs)

Model Data

Algorithm (distributed/standalone)
| FedAvg || FedOpt || FedNova | | FedNAS |

|Decentralized FL, | Vertical FL | | I

______________________________________________________________________________________

FedML-core (low-level APIs)

‘ Topology H Security/Privacy ‘

|

Worker ‘ | Coordinator

ComManager ‘

Send Thread ‘ ’ Receive I'I'hread ‘

Abstract Communication Layer

\J

MPI || MQTT

Other Backend

Distributed Communication

' v

Models (LR, DNN), Optimizer

v

On-Client Learning Framework

v

PyTorch Mobile Training

Training Engine

& FEDN

e
X

MAKING COLLABORATION INTELLIGENT

O PyTorch



FedML-API - Simplicity is Our Key

# topology configuration
device = (process_id, worker number - 1, args.gpu num per_ server)

# load data

dataset = (args, args. )

[train data num, test data num, train data global, test data global
train data local num dict, train data local dict, test data local

Only 4 lines!

# create model
model = (args, model name=args: , output dim=dataset]

# start "federated averaging (FedAvg)"
}process id, worker number, device, comm,
train data num, train data global, test data global,
train data local num dict, train data local dict, test data local dict, args)

e FedAvg, FedAvg Robustness, FedOpt (server optimizer), FedNova (client optimizer)
FedGKT, FedNAS, Decentralized FL, Vertical FL, Split Learning, etc.




NTELLIGENT

% FEDI
FedML Feature List

Dataset MNIST, Synthetic
Federated EMNIST; Shakespeare; Fed-CIFAR100; stackoverflow (NWP);
CIFAR10, CIFAR100, CINIC10 (ImageNet+CIFAR10)
Google Landmark, COCO, ImageNet
Support non-1ID partition tool for heterogeneous distribution

Model LR, CNN (2 layers), RNN (Bi-LSTM), ResNet, MobileNet V3, EfficientNet
Transformer/BERT, etc.

Federated Optimizers and FedAvg, FedOpt (server optimizer, ICLR 2021), FedNova (client

Algorithms optimizer, NeurlPS 2020), FedAvg_Robustness (NeurlPS 2020),
FedGKT (NeurlPS 2020), FedNAS (CVPRw 2020), Turbo-Aggregate,
Decentralized FL (NeurlPS 2020 FL), Vertical FL, Split Learning, etc
Support both cross-device and cross-silo settings.

Platform Supports Distributed Computing, loT/Mobile, Standalone Simulation

Three computing paradigms, SOTA optimizers, various datasets and models!



FedML Feature List - Privacy/Security

Dataset

Model

Federated Optimizers and
Algorithms

Platform Supports

MNIST, Synthetic

Federated EMNIST, Shakespeare; Fed-CIFAR100; stackoverflow (NWP);
CIFAR10, CIFAR100, CINIC10 (ImageNet+CIFAR10)

Google Landmark, COCO, ImageNet

Support non-1ID partition tool for heterogeneous distribution

LR, CNN (2 layers), RNN (Bi-LSTM), ResNet, MobileNet V3, EfficientNet
Transformer/BERT, etc.

FedAvg, FedOpt (server optimizer, ICLR 2021), FedNova (client
optimizer, NeurlPS 2020), FedAvg_Robustness (NeurlPS 2020),
FedGKT (NeurlPS 2020), FedNAS (CVPRw 2020), Turbo-Aggregate,
Decentralized FL (NeurlPS 2020 FL), Vertical FL, Split Learning, etc
Support both cross-device and cross-silo settings.

Distributed Computing, loT/Mobile, Standalone Simulation

Three computing paradigms, SOTA optimizers, various datasets and models!

LIGENT



System Config diversity

Diverse topologies:

* A /‘\ %%@
l\‘ ‘@‘ 0/0?‘0 Of \‘Q\Q QQQ o— I —/@

Centralized Decentralized Hierarchical Vertical Split



¢ FEDMI|
Deployment for Cross-silo FL

FL Central Server (weight/gradient aggregation) amazon EC2 (1 GPU)

Hospital 1 # FeomL iy Hospital 2 wreom. @

anezen [EC2 (4 GPUs) All-reduce SGD amazon EC2 (4 GPUs)

All-reduce SGD
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FedML Live Demo

FedML:
A Research Library and Benchmark for
Federated Machine Learning

M OURSE0 "l - BATEAE RPNy '8 =



http://www.youtube.com/watch?v=EDNOMijTQ-E

Sz

‘\...

FedML-core - Worker-oriented Programming -

Interface

import torch.distributed as dist ss FedAvgClientManager(WorkerMananger): worker-oriented
‘ i init If, ..., topology /ma , trail H i
Training procedure-oriented programming ____Im (sel opalagy fmgnager, frainer) programuing
lef train(): 4 self.topology_manager = topology_manager
self.trainer = trainer |
model = Net()

optimizer = optim.SGD(model.parameters(), Ir=0.01, momentum=0.5) ° [reaister messade receive handlers(self):
|__mobile network | social network__ | |___bank scenario_ |
maimes o Qv =REg=
—_— -— Xa Xg Xs
Y, \ model O «——— O Jouvle-sided X=X, Xg X1
//,/ N =

aggregate ; " ‘
. I l model X f single-sided : ‘)og;ts\
(o}

Clent1 Client2  Client N T Te Xa Y Xg Xs

(a) Centralized FL (b) Decentrahzed FL (c) Vertical FL.

selr.sena_message_lo_Clienyreceive_la, params_o)

¥

(a) Training procedure-oriented programming (b) Worker-oriented programming

Figure 2: A worker-oriented programming design pattern of FedML.

USCUniversity of

Southern California }""T'L]EURAL INFORMATION

FEDM

MAKING COLLABORATION INTELLIGENT

‘cia PROCESSING SYSTEMS
ole

fedml_api

centralized

data_preprocessing

—_—
m initial model
_—

Gradient and

IR

S - oS Gradient and
g .~  architecture
Client 2 ClientN  parameters

(d) FedNAS

» message_define.py

@ MyModelTrainer.py

README.md
2 utils.py




FedML-core - Trainer Customization

# topology configuration
device = (process id, worker number - 1,
args.gpu_num per server)

# load data

dataset = (args, args. )

[train data num, test data num, train data global,
test data global,

train data local num dict, train data local dict,
test data local dict, class num] = dataset

# create model
model = (args, model name=args:
output dim=dataset[7])

# start '"federated averaging (FedAvg)"
(process id, worker numker, device,
Comm, model, train dzca num,
train data global, test data_global,
train data loczl num dict,
train data local dict,
test dat: local dict, args,

model trainer)

=% USC University of
W Southern California :2°T

ModelTrainer (ABC) :
(self, model):
self.model = model
self.id = 0

(self,
trainer id):
self.id = trainer id

(self,

model parameters) :
Pass

(self,
train data, “““
device, args): A A “
Pass \ A “A“‘

WY W

(self, test data,
device,
args) :
pass




FedML supports diverse platforms

ModelTrainer (ABC) :

(self, model):
se_T.roos. — moce. | S S S S SR S '

self.id = 0 On-Device Training

Standalone
Simulation

Mobile, lIoT (TinyML)

L ole

(self,

trainer id):

self.id = trainer id QTETEP compMenode
|
FedML HTTP / TCP i
(self S = [l oR o) Y
I

model_parameters) :
Pass

%@ ‘

________________________________

management S - | -
node §

train data, e O PYTorCh

device, args):
Pass

Write once, run everywhere:
et s Reusing the same trainer class definition in three platforms
device, o Let the library do the algorithm and platform-specific implementation

args) :

X




FedGKT: An Algorithmic Example of FedML.:

FedGKT is a new distributed training framework, and requires specific communication protocol (soft
labels, hidden features, etc) and training paradigms (training models in client and server alternatively).

4 - edge-sided model

Edge fextractor | Tserver ‘:

Compagt CNN
A

Y I D
[
fextractor _" fclassifier _Tq H
fextractor —Jl %" felassifier ‘ﬂ U

Server
2 - periodic transfer
: async?ironous LOSSyp
R
K ull
server
-] |

3 - transfer back

2RI
h

Client1  Cli

nt2  Client N

i =

@

Step 1: Model weight

Step 2&3: Hidden Representation, Logits (soft labels)
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Introduction

Extremely Large DNN: the SOTA model in NLP (Natural Language Processing) domain has billion or even trillion of

parameters [1], and the SOTA model in CV (Computer Vision) domain has around 4 million parameters [2].

Positional

Positional
Encoding >'® Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.
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[1] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019-10. https://arxiv.org/abs/1910.10683

[2] MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation. CVPR 2020

Chaoyang He, Haishan Ye, Li Shen, Tong Zhang.
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Motivation Edge devices are personal devices with
limited memory and storage and
computation capabilities

Storage space running out 9:05p
Some system functions may not work

=

N




Motivation

Challenges of Federated Deep Learning - Training large modern
DNN (ResNet, Transformers, etc) on-device is difficult due to data
and system resource constraints:

?’ézjfe”t}”a’a”‘}e(f’ 1. Limited memory and computation (no GPU accelerator)
. 2. Limited bandwidth and unstable wireless communication
@ 3. Data heterogeneity

Modell Model2 Model3

o0 0 0
Jo- e o @

|
o

How to efficiently and effectively train large DNN over resource-constrained edge devices?



Related Works: a Basic Formulation of Federated Learning

N k)

1
min F(W é mmz f(") W), where f®) (W) = — E (W X4,v:)
k 7 )
e N® i=1 Wit < Zk~l n Wf+l
Algorithm 1 FedAvg Algorithm: A Challenge Perspective Server
1: Initialization: there is a number of clients in a net-

Nl N e Y

[ —
- o

work; the client k has local dataset D¥ ; each client’s
local model is initialized as W ;

. Server_Executes:

: for eachroundt =0,1,2,... do

: Sy < (sample a random set of clients)

. for each client k € S; in parallel do

: W, | < ClientUpdate(k, W)

. end for

o Wi+ Zkl»{:l %Wfﬂ

. end for

12: Client_Training(k, W): // Run on client k
: B « (split D into batches) . . .
14: for each local epoch 7 with7 = 1,2, --- do Client 1 Client 2 Client K
15:  for batch b € B do

16: W« W — Vi F(W;b)

w

17:  end for

is: end for _Data — W What if W is DNN?

19: return W to server

W « W — nVw F(W;b)

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017



Related Works: a Basic Formulation of Federated Learning

N k)
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Algorithm 1 FedAvg Algorithm: A Challenge Perspective Server
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work; the client k has local dataset D¥ ; each client’s
local model is initialized as W ;

. Server_Executes:

: for eachroundt =0,1,2,... do

: Sy < (sample a random set of clients)

. for each client k € S; in parallel do

: W, | < ClientUpdate(k, W)

. end for

o Wi+ Zkl»{:l %Wfﬂ

. end for

12: Client_Training(k, W): // Run on client k
: B « (split D into batches) . . .
14: for each local epoch 7 with7 = 1,2, --- do Client 1 Client 2 Client K
15:  for batch b € B do

16: W« W — Vi F(W;b)

w

17:  end for

is: end for _Data — W What if W is DNN?

19: return W to server

W « W — nVw F(W;b)

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017



Related Works: Split Learning

T

b

[2] Poirot et al., Split Learning for collaborative deep learning in healthcare, NeurlPS 2019

B

3
hospital C | .
hospital B | "
hospital A
j
raw intermediate
— data representations

e ——

server



Related Works

Federated Learning:

Pros: <>
1) exchanging gradients/models periodically;

2) reusing distributed optimization methods in conventional distributed training in the GrédientiParamster
data center environment. \ & g
ConS: | ' . ' ' ' Mc;deh M$E|2 M\odels
1) Communication cost for each gradient/model is much higher than a hidden vector J 0 g

2) training large DNN models on device is prohibited due to resource constraints.

Split Learning:
Pros: " hospital C

hospital B |

1) lower communication cost than FL: only exchanging the hidden vector of each I I_‘mp“a‘A |
training sample/mini-batch; i L 3
2) a portion of the entire DNN architecture is trainable on resource constrained s— e ———

devices. 3) hidden vector is more secure to resist adversarial attacks.

Cons:

1) Do not support periodical synchronization, which prohibits off-the-shell optimization
methods; 2) the straggler problem becomes more severe because one SGD iteration
has been split into four rounds of communication.



Insights

Can we design a learning framework that leverages advantages of FL and SL?
To be more specific, is there a framework that supports:

1. Computation Efficient: Computation-efficient on-device training (trainable) like
SL

2. Communication Efficient: Exchanging hidden vectors during training like SL

3. Low Communication Frequency: Supporting periodical training like FL (local
SGD)

4. No Accuracy Compromise: Preserving or outperforming the model accuracy of
FL and SL



Our Idea

—_—

Transfer Data (Centralized Training)
2. Transfer Model (Federated Learning)

3. Can we only transfer “knowledge”?

Transfer knowledge from many small networks to a larger one which has
more capacity to obtain high accuracy

Compact
NNO

Compact Large
NN1 DNN

»
Compact
NNn



FedGKT Overview

4 - edge-sided model

2 - periodic transfer 4’

async)ironous
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Problem Formulation

First Formulation

Je Je

X D | Feature Extractor We(l) > H gl) —»| Classifier Wél) Y,

7

x (2) | Feature Extractor We(Q) > H§2) | Classifier WC(Q) Y,

i

X ()| Feature Extractor W )b Fy {/1p| Classifier Wi ngK)

(3

N S I
f
N (k)
argmin FC(ng),ng)) = argmin Zﬁc(fc(k)(wgk); e(k)(ng);Xf:k)))ayEk))
w® k) w® wky =1 A M ’
¢ e | k)

find a good and small feature extractor



Problem Formulation

First Formulation: ideal

13 J
— D) Server
X El) Feature Extractor We(l) > H gl) —»| Classifier Wél) yz(l)
H: fs
, 2 (2) @], - ;
x (2) | Feature Extractor WP( ) > H ;") | Classifier Wi\ y;  —
' - H 2 | Classifier W
X ()| Feature Extractor W )b Fy {/1p| Classifier W) ng) R 4
f e
N (k) argminFs (W, W) = argminz Z /. (fs (W H'Ek)%yz(k))
argmin F(WS W) = agmin Y L (fOWD; fOw B x M) 0 We ki
w® wk) w® wky =1 h Vv g subject to: Hl(.k) = fe(k)(ng);ng))

find a great and large classifier by leveraging
find a good and small feature extractor users’ feature extractors



Problem Formulation

First Formulation: ideal

Lo J
— —= Server
X El) Feature Extractor We(l) Classifier Wp( b yf s
H. y
2 tA el
x ()| Feature Extractor 1V (2?) i Classifier WC(Z) yz( ) — =
: : H | Classifier TV
x (K| Feature Extractor We(K)* HEK)" Classifier M/(EK) ng) A
i R —— — —— H(I{)
I K NG
Nu,.\ : - - S EET_wETEN argmin Es fs(WS>HEk))7yz(k)
argmin F,(W® W) = argmin Y * lIght-weight model at the clients W ; ; ( )
w®why T whwk) i e largeleffective model at the server = fPwd; x)
» small communication requirement:
feature size is much smaller than the large classifier by leveraging

find a good and small{ model size 's’ feature extractors



Problem Formulation
First Formulation: practical

% 2
— — Server
¢ El) Feature Extractor We(l) Classifier W(( b yf %
H. f
9| ,,(2) ol . .
x (2) | Feature Extractor WP(Q) i Classifier Wc( ) Yi
: : H | Classifier TV
X (K| Feature Extractor W )b | Classifier W) ngK) P
7 R

N ~. , . : —_ argminz Z Ls (fS(WS; Hgk)),yz(k)>
argmin Fu(W®, W) =  argmin users can’t train good feature extractors et

w® ) w® w1 alone with its small data — fPw®, x®)
 users’ poor feature extractors also mess
up the training at the server arge classifier by leveraging

find a good and small feature extractor users’ feature extractors



Knowledge Distillation

e Bidirectional Knowledge Distillation (CVPR 2018, ICLR 2018)

StUdent/teaCherl._ ogits Predictions labels
X ={z;}¥, M classes 1 I M
i — Network 04 Lca
o (L i"' : KL(p2] Ip1) ii KLip1|1p2)
Network ©, l I Leo
teacher/student
N M
exp(z1") Py (x:)
p1(xi) = ) log( €T Dk r(p2|p1) = Py (x;) log .
VTS () —— 3 3 oot o) " R )
1=1 m=1
Transfer from 2to 1: The overall loss function Lg, for network ©; is defined as

Le, = L¢, + Drr(p2|lp1)



Problem Formulation
Reformulation as Bidirectional Knowledge Transfer

l‘i Edge fe
— Server
Xgl) Feature Extractor We(l) > HE” —»| Classifier Wél) yz'(l)
H f
(2) 2| ,,(2) R e
x @) | Feature Extractor We,(2) > H;”" | Classifier VV(g ) Yi
; ,. H (2 | Classifier W
x (K| Feature Extractor WE(K)* HEK)" Classifier VVéK) yEK) A
7 l

K
argminF.(W? W)} = CE loss of the classifier 4+ £ (=2, zgk)) argminFs (W 5, W*) = CE loss of the classifier + Z lip (2877, )
w (k) W k=1

The logits z; and z, are the output of the last fully connected layer in the server model and the client model



Problem Formulation
Reformulation as Bidirectional Knowledge Transfer

W k=1

Je Edge fe
— Server
Xgl) Feature Extractor We(l) > HE” —»| Classifier W(gl) yfl)
Y y il
, 2 (2) ifier @] (@ X
x @) | Feature Extractor Wf,( ) > H ;" | Classifier W™l Yi
: ,. H ) | Classifier W
x (K| Feature Extractor W (5 HEK)" Classifier /() yEK) o
i = — H(.K)
f
K
argmin F.(W3, W) = CE loss of the classifier + (rcp (27, 2")  argminFy (W, W*) = CE loss of the classifier + > txn(z7, 24)
w (k)

The logits z; and z, are the output of the last fully connected layer in the server model and the client model



Problem Formulation
Reformulation as Bidirectional Knowledge Transfer

Je

i 'fc
T Server
X El) Feature Extractor We(l) Classifier W(§ Y y§ o
Y £
B i .
x ()| Feature Extractor We,(z) Classifier W(,Q) yz( )
: ,. H? | Classifier W
XEI\') Feature Extractor WS(K)* HEK)" Classifier VV(;('K) yEK) o A

B
3

argminF.(W*, W") = CE loss of the classifier argminFs (W, ng)*) = CE loss of the classifier
w (k) W s

users bring their predictions closer to server model’s prediction

1 users absorb the server model knowledge to improve feature extraction
] server absorbs users’ knowledge to train a better classifier



FedGKT: Alternating Minimization

Server

Client

K NF)
(k)= (k) (k). (k) (k) (k)*
argmlnF (W, W ’") = argmin bop(fs(Ws; f/ (W™ X )+ > lrp(ze", zs
Lt 7D DD 3 teole)
(k)
(®)
where 2" = [ (W (W™ X)), and 2o = fo(Ws; HY) ©)
HT’”
N ()
argminF, (WS,W( )) = argmin Z Lok f(k)(W(k) f(k)(ng),X(k))) (k)) +lxD (zs, (k))
w (k) - %74 A—
HEU
(10)
where 2z = & (W, f(k)(W(k) X(k))) and z% = fo(W2; H®) (11)

'

H®



Method: Distributed Optimization Methods

1.  Local SGD with Momentum
V=gV, ,+aV ,L(W,X,y)
W=w-V,

2. Cross-round Learning Rate Scheduler

Learning Rate




Method: Model Architecture

Pooling + FC L
---------------- r [ i
“soft label”

Client Model, a tiny model!

_______________________________

Conv1 +BN11 +RelLU1

|

Pooling + FC

Server Model

256-d

Loss_kd( I Loss _true




System Design and Implementation

FedGKT is a new distributed training framework, and requires specific communication protocol (soft
labels, hidden features, etc) and training paradigms (training models in client and server alternatively).

4 - edge-sided model

f

fserver ‘ :

Edge extractor Server
2 - periodic transfer
Compatt CNN ; asyndfonous LOSSKp
e - — i : )
\ ’—‘ : .
fextractor _" fclassifier _Tq H : ’ | — *H H
fextractor —Jl %" folassifier |~ U L - Torver i H

> : —
extractor | ’7_" classmer‘ H [ }

1 - local training

LOSS '
4 KD 3 - transfer back

7 X
lll

—

Client1 Client2  Client N

Step 1: Model weight

Step 2&3: Hidden Representation, Logits (soft labels)



System Design and Implementation

With the help of FedML library, we can easily implement FedGKT algorithm and conduct various
experiments with different datasets and models.

FedML:

A Research Library and Benchmark for
Federated Machine Learning

[0 Paper <[> GitHub Slack Video B Doc

Homepage: https://fedml.ai
(Best Paper Award, NeurlPS 2020, FL Workshop)



https://fedml.ai

Experimental Results: Test Accuracy
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Figure 3: The Test Accuracy of ResNet-56 (Edge Number = 16)



Experimental Results: Non-|ID

Table 1: The Test Accuracy of ResNet-56 and ResNet-110 on Three Datasets.

Model Methods CIFAR-10 CIFAR-100 CINIC-10

II.LD. non-LILD. IILD. non-I.I.D. ILILD. non-LLD.

FedGKT (ResNet-8, ours) 92.97 86.59 69.57 63.76 81.51 77.80

ResNet-56 FedAvg (ResNet-56) 92.88 86.60 68.09 63.78 81.62 77.85
Centralized (ResNet-56) 93.05 69.73 81.66
Centralized (ResNet-8) 78.94 37.67 67.72
FedGKT (ResNet-8, ours) 93.47 87.18 69.87 64.31 81.98 78.39

ResNet-110 FedAvg (ResNet-110) 93.49 87.20 68.58 64.35 82.10 78.43
Centralized (ResNet-110) 93.58 70.18 82.16

Centralized (ResNet-8) 78.94 37.67 67.72




Experimental Results: Efficiency

ResNet-110
ResNet-56
ResNet-8

Figure 4: Edge Computational Efficiency (CIFAR-100)
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FedGKT demands 9 to 17 times less computational power (FLOPs) on edge devices
and requires 54 to 105 times fewer parameters in the edge CNN

Figure 5: Communication Efficiency (ResNet-56)



Experimental Results: Ablation Study

Test/AccTop1 Test/AccTop1
client_number: 128 client_number: 16 client_number: 64 client_number: 16
client_number: 64 client_number: 128

o0 100 15( 200 50 100 15 20(
(a) GKT on IID dataset (b) GKT on non-IID dataset

Figure 5: GKT result on CIFAR10



Experimental Results: Ablation Study

Test/AccTop1

client_model: resnet8 client_model: resnet4

Figure 6: Client Model Architecture Exploration



Experimental Results: Ablation Study

Test/AccTop1i

GKT (without distillation on the server) GKT (distillation on the server)

Figure 4: Evaluation on the distillation loss on the server side



Contributions

FedGKT is the early work that explores federated deep learning and transfer
knowledge (not data and model) on edge devices.

FedGKT is memory and computation efficient, similar to SL

FedGKT can train in a local SGD manner like FedAvg to reduce the
communication frequency

Exchanging hidden features as in SL, as opposed to exchanging the entire
model as in FedAvg, reduces the communication bandwidth requirement

FedGKT is public data-free knowledge transfer method

FedGKT naturally supports asynchronous training, which circumvents the
severe synchronization issue in SL



Future Works

e Exchanging hidden features provides “some” privacy guarantees to the users

"1 Providing strong privacy/security guarantees for FedGKT is an interesting next step
1 Leveraging Secure Aggregation in FedGKT?

i ‘ Conv1+BN1+ReLU1!
¥

secure?

Lol ol o o e Gl ol ol Sl O O

training ResNet-56 at the =
server



Future Works

e Extend FedGKT to Transformer Models

Output
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Figure 12. Transformer Model Architecture (Vaswani et al., 2017)

Vision Transformer (ViT)

MLP
Head

Patch + Position
Embedding > @ﬂ [ﬁ

Transformer Encoder

008 ) 00 o)

[class] embedding Linear Pr0_|ecl10n of Flattened Patches

SHE | IILI
e s

(1)

* Extra learnable

| |
mal—*ﬁilmmm
A i

Figure 13. Vision Transformer (Dosovitskiy et al., 2020)



Future Works

e FedGKT also allows for different models to be used at each user

1 Providing model adaptation and personalization at each user is also another next step




Long-term Goal

1. Transfer Data (Centralized Training) 3. Can we only transfer “knowledge™?
2. Transfer Model (Federated Learning)

Compact
NNO

Compact Large
NN1 DNN

>
FedGKT is a starting point of our goal towards “Knowledgeable Communication”:
1) Al Agent (ML model) in Internet can freely exchange/transfer/share their “knowledge”
without disclosing a large amount of raw data or model;

2) ML models can be equipped with communication networking interface to exchange
neural representation with other models in a decentralized Internet.

Compact
NNn



Distributed Training v.s. Federated Learning

C £ | In essence, three methodologies are useful to both:
e | °

1. Dynamic system and stochastic ML lead to
complicated interaction between these objectives.

.I l L] .I l L
" " : Pipelransformer, ICML 2021

2. Trade-off among multiple objectives including
accuracy, efficiency, security, and privacy.

Group Knowledge Transfer, NeurlPS 2020

T 3. On demand: focus on the key demand for
: different use cases (ML applications), optimizing
< /@ E = E = ﬂ 5 one of the objectives but not deteriorating the

others.



Federated Learning

Foundations of Algorithm Design System Bottlenecks/Opportunities

Resource-constrained FL (small edge models, large

server models)
Unsupervised federated learning Scalability: 1K users — 1M users
Federated neural architecture search

User selection, optimal scaling
Heterogeneity, personalization, and fairness

Trustworthy

Secure and resilient model aggregation
Adversarial users (data/model poisoning)
Leveraging trusted computing environments




Ongoing Works 1: Self-supervised Federated Learning

The model architecture The model architecture at the client in FL

Evaluation Protocol for
Self-supervised Federated Learning
(a downstream task which is trained and
tested on annotated data)

Self-supervised Federated Learning
using Pretrained Feature Exactor — N
(Encoder) on Private Datasets

in centralized training »  Global Similarity <
i —— »  Global Similarity
T : Personal
’_' Similarity ; Similarity ~ | - T
c - : = " stop-grad
predictor h o ' predictor h ' Slop=gras predictor h - e
encoder f encoder f : socadont sacoder | encoder f encoder f
' (Personalized) (Personalized) (global) (global)
image x E \ image x /

Self-supervised Pre-training on Large-
scale Dataset (e.g., SimSiam, BYOL, etc)

step (a) step (b) step (c)

Fig. 1: Personalized Self-supervised Federated Learning



Ongoing Works 1: Self-supervised Federated Learning

Self-Supervised-Federated-Training/Accuracy SSL-Train/Loss SSL/Centralized/LinearEval/Acc
= SSFL-simsiam-0.1-10client-nonIID = SSFL-simsiam-0.1- ent = SSFL-simsiam-0.1-10client-nonIID = SSFL-simsiam-@

80
60
40

20

Elementary Result: Contrastive Loss with SimSiam Framework in FL setting (\Weighted Averaging) can
archive top-1 accuracy 91% in CIFAR-10 (non-IID) using ResNet-18!

Important optimization tricks: 1) local SGD with momentum 2) cross-round learning rate scheduler

80




Ongoing Work 2 - Joint Adaptation to Data and System

Heterogeneity with FedNAS

Step 1

w : network weights

’ G w7l v QP
’—Q’] il \/ \/ \/
« : architecture parameters ) : ; o cee

Figure 1: Federated Neural Architecture Search (step I:
search locally; step 2: sending the gradient of o and w to

the server side; step 3: merge gradient to get global «v and
w; step 4: synchronize updated « and w to each client.)
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FedML and DistML Ecosystem

Se USCUniversity of < FEDI
i1V Southern California o ot
1. Experiments ™ 46V | [ FedNLP | [FedMedical| [FedFinance| [ ... |

2. Applications

| FedML Server (HTTP, MQTT) |

HTTP/T‘CP/'

‘\T-rpfrcp

FedML-Mobile FedML-loT
Android NVIDIA loTs
iOS RaspBerry Pi

FedML-API (high-level APIs)

Model Data

Algorithm (distributed/standalone)
| FedAvg || FedOpt |{ FedNova | | FedNAS |

|Decentra|ized FL| | Vertical FL | I |

FedML-core (low-level APIs)

’ Topology H Security/Privacy ‘ l Worker ‘ ‘ Coordinator
’ ComManager ‘ ¢ *

T -
’ Send Thread | ‘ Receive Thread ‘ ‘ Models (LR, D:lN)’ Optimizey

‘ Abstract Communication Layer ‘ ‘

v

’ MPI H MQTT H Other Backend ‘ ‘

Distributed Communication

O PyTorch

On-Client Learning Framework ‘

PyTorch H Mobile Training ‘

Training Engine

Application/Model

FedCV , FedNLP (preparing for EMNLP 2021) FedGraphNN (ICLR 2021
workshop, MLSys 2021 workshop)

Algorithm/Theory
FedGKT (NeurlPS’2020): OnlinePushSum
resource constrained FL (NeurlPS’2020 Workshop):

Single-sided Trust in

FedNAS, MiLeNAS (CVPR’2020):  Decentralized Topology
data heterogeneity and automation

System/Infrastructure

FedML.ai (NeurlPS 2020, FL Workshop, Best Paper Award):
fundamental system, an open source library for FL research

PipeTransformer (ICML'2021):
elastic distributed training for giant models (Transformers)

Vision/Review

Advances and Open Problems in Federated Learning
FnTML (Foundation and Trend in Machine Learning), Vol3, 2021



