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Fundamental Research to Alexa AI Applications

Model Compression 
for edge devices

Pretrained models
(BERT, ViT, etc)

1. Distributed Training
in GPU cluster

2. Federated Learning
at the edge



Distributed Training v.s. Federated Learning

In the Federated Learning setting, the data is distributed 
across millions of devices in a highly uneven fashion. These 
devices have low computational compatibility, significantly 
higher-latency, lower-throughput connections

--- Federated Learning and Open Problems, Foundations and Trends in Machine 
Learning (FnTML) 2021; …, Chaoyang He, and many Googlers

1,600,000,000



Distributed Training v.s. Federated Learning

Goals: data and model privacy; mitigate the difficulty of data 
centralization; ubiquitous ML in 5G/IoT future.

Challenges:
1. data heterogeneity and label deficiency
2. system heterogeneity; resource-constraint; scalability
3. trustworthiness: security, privacy, fairness, 

personalization, interpretability, etc

Goals: training large model in reasonable time, energy cost, and 
hardware resources to obtain a higher accuracy

Challenge:
1. communication cost
2. memory constraints
3. computational efficiency
4. straggler/failure



Distributed Training v.s. Federated Learning

In essence, three methodologies are useful to both:

1. Dynamic system and stochastic ML lead to 
complicated interaction between these objectives.

2. On demand: focus on the key demand for 
different use cases (ML applications), optimizing 
one of the objectives but not deteriorating the 
others. 

3. Trade-off among multiple objectives including 
accuracy, efficiency, security, and privacy.

PipeTransformer, ICML 2021

Group Knowledge Transfer, NeurIPS 2020

FedML Lib and Ecosystem, NeurIPS 
2020 FL workshop, Best Paper Award



Outline: Distributed ML for Large-scale Models

● Part 1: Dynamic Distributed Training
PipeTransformer: Automated Elastic Pipelining for Distributed 
Training of Large-scale Models. ICML 2021
https://DistML.ai

● Part 2: Scalable Federated Learning
[Algorithm] Group Knowledge Transfer: Federated Learning of 
Large CNNs at the Edge. NeurIPS 2020

[System] FedML: A Research Library and Benchmark for 
Federated Machine Learning
(Best Paper Award, NeurIPS 2020 FL Workshop)

[Diverse Applications]
FedML Ecosystem: Ubiquitous Distributed Training for Diverse AI 
Applications at the Edge.
https://FedML.ai

https://distml.ai
https://fedml.ai


PipeTransformer: Automated Elastic Pipelining for 
Distributed Training of Large-scale Models

 Chaoyang He
PhD student (2018-present), CS, USC

Former R&D Manager at Tencent
Researcher, Tencent AI Lab

Salman Avestimehr
Professor, ECE&CS, USC

Director, USC-Amazon ML Center

Shen Li
Research Scientist, Facebook AI
Team Lead, PyTorch Distributed

CS PhD, UIUC

Mahdi Soltanolkotabi
Associate Professor

CS, ECE, USC

https://DistML.ai
https://chaoyanghe.com/pipetransformer/

https://distml.ai
https://chaoyanghe.com/pipetransformer/


https://pytorch.org/blog/pipetransformer-automated-elastic-pipelining/
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Outline
● Background and Related Works

● Motivation and Ideas

● Overall Design (Animation)

● AutoFreeze: Freeze Algorithm

● AutoPipe: Elastic Pipelining

● AutoDP: Spawning More Pipeline Replicas

● AutoCache: Cross-pipeline Caching

● Experimental Results

● Future Works



Background

After 2021-06: 100 Trillion?

The parameter number of deep neural networks (Transformers) is dramatically increasing!



Background
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Background



Related Works

Data and Model Parallel Data Inter-Batch:
ByteScheduler (SOSP’19)
Crossbow (VLDB’19)

Data Intra-Batch:
PT Pipe
PT DDP (VLDB’20)
GPipe (NeurlPS’19)

Model Inter-Operator
PT RPC
TF + gRPC (EuroSys’19)

PipeDream (SOSP’19)
HetPipe (ATC’20)

PT RPC + DDP
PT RPC + Pipe
Parallax (EuroSys’19)
BytePS (OSDI’20)

Model Intra-Operator
Mesh-TF (NeurlPS’18)
TouFu (EuroSys’19)

FlexFlow (MLSys’19)
GPT-3 (NeurlPS’20)
ZeRO/DeepSpeed (SC’20)

1. System-wise: Distributed Training System Design and Optimization



Pipeline Parallelism Hybrid of Data Parallelism and Pipeline Parallelism

Related Works



Related Works

Intra-layer and inter-layer model parallelism. 
https://FlexFlow.ai

Model Parallelism



Related Works

1) Architecture Optimization Manually: 
LinFormer (AAAI’2021, Best Paper Award)

2) Automated Architecture Design: 
Neural Architecture Search: FBNet (CVPR’ 2019, 400+ citations)

3) Spare Training: pruning, quantization, etc
Lottery Ticket Hypothesis (ICLR 2019, Best Paper Award)

4) Progressive Training

5) SGD-based Distributed Optimization:
LARS (ICLR 2020): Large Batch Optimization for Deep Learning: Training BERT in 76 minutes

  ...

2. ML-wise: Model Architecture and Training Algorithm



Our Motivation and Idea

Elastic Distributed Training System!

1.  (Sys) Distributed Training System 2.  (ML) Model Architecture and Training Algorithm

Pro:
Efficiency in Computation/Communication/Memory

Con:
View the model/SGD optimization as black box

Pro:
Improve the efficiency mathematically, fundamentally

Con:
1. Lack of system design to amplify the algorithmic advantages
2. the model-wise optimization is not friendly to distributed training

What if we co-design?

1. Progressive Training
2. Dynamic Neural Networks 

(https://arxiv.org/pdf/2102.04906.pdf)

 Hybrid of Pipeline and Data Parallelism 



Progressive Training

[1] Freeze Training: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. NeurIPS 2017
[2] Efficient Training of BERT by Progressively Stacking. ICML 2019
[3] Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping. NeurIPS 2020. Minjia Zhang
[4] On the Transformer Growth for Progressive BERT Training. NACCL 2021

Freeze Training [1] Progressive Stacking [2]



Pipeline Parallelism Hybrid of Data Parallelism and Pipeline Parallelism

Distributed Training System

Key observations when applying progressive training (e.g., freeze training)  to the above training systems:
1. The computation cost becomes unbalanced in pipeline-parallelism
2. The memory cost is reduced gradually
3. The communication cost among DP workers should be reduced gradually



Overall Design

The process of PipeTransformer’s automated and elastic pipelining



PipeTransformer Animation
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PipeTransformer Animation



PipeTransformer Animation



Overall Design

https://DistML.ai
https://chaoyanghe.com/pipetransformer/

https://distml.ai
https://chaoyanghe.com/pipetransformer/


Freeze Algorithm



AutoPipe: Elastic Pipelining
(1) Basic Usage of PyTorch Pipeline



trade-off of computational 
load, communication cost, and 
memory consumption among 
partitions (each partition is 
loaded to one GPU) 

AutoPipe: Elastic Pipelining
(1) Pipeline Partitioning Strategy



AutoPipe: Elastic Pipelining

To avoid extensive memory profiling, the compression algorithm uses the parameter size as a proxy for the training memory 
footprint.

(2) Pipeline Compression



AutoPipe: Elastic Pipelining 

When the pipeline compressed (K becomes smaller), the bubble is shrunk (left figure)

However, we find that the micro-batches size (M) also needs to be adjusted accordingly (right figure shows the optimal M 
in different K). 

(3) Dynamic Number of Micro Batches



1. A trade-off in Pipeline partition
2. Pipeline compression
3. optimal micro-batches chunk number (M)

AutoPipe: Elastic Pipelining
(4) AutoPipe algorithm: put all together



AutoDP: 
Spawning More Pipeline Replicas



Key challenges when adding more pipeline on the fly of training:

1) DDP Communication: Collective communications in PyTorch DDP requires static membership, which prevents 
new pipelines from connecting with existing ones; 

2) State Synchronization: newly activated processes must be consistent with existing pipelines in the training 
progress (e.g., epoch number and learning rate), weights and optimizer states, the boundary of frozen layers, and 
pipeline GPU range; 

3) Dataset Redistribution: the dataset should be re-balanced to match a dynamic number of pipelines. This not 
only avoids stragglers but also ensures that gradients from all DDP processes are equally weighted.

AutoDP: 
Spawning More Pipeline Replicas



Our idea:
1. creating two process groups. Each process handles one pipeline
2. the active training process group (yellow) handles the training.
3. the message process group (purple) handles State Synchronization and Dataset Redistribution by messaging 
passing between two groups with MPI communication. 

AutoDP: 
Spawning More Pipeline Replicas



AutoDP: 
Spawning More Pipeline Replicas



In this example, the first 3 layers (purple) at two time steps T1 and T2(epochs) are the same computation, so T2 can reuse the 
caching from T1.

AutoCache: 
Cross-pipeline Caching



1. Overall Speedup

Evaluation on Various datasets and models, including tasks in both CV and NLP.

Experimental Results



Key takeaway: 
1.  the main speedup is the result of elastic pipelining which is achieved through the joint use of AutoPipe and AutoDP 
(purple)

2. AutoCache’s contribution is amplified by AutoDP (green v.s. blue: more parallel DP workers can use caching) 

3.  freeze training alone without system-wise adjustment even downgrades the training speed (yellow)
(the underlying mechanism of PyTorch is not tailored for freeze training, forcing CUDACachingAllocator to split blocks or launch new 
memory allocations)

Experimental Results
2. Breakdown for speedup



Communication Infrastructure: InfiniBand CX353A where cross-machine bandwidth is 5GB/s, and GPU-to-GPU  bandwidth within a machine (PCI 3.0, 
16 lanes) is 15.754GB/s.

Key takeaway:
1. Communication cost is not the main bottleneck when we use InfiniBand for medium-scale models (< 500M such as 
ViT-base and BERT-large), but it is still non-trivial even under freeze training.
2. Recent progress in NLP and CV has scaled up the model size to billion/trillion-level (GPT-3 - 175B [1],  Switch 
Transformer - 1.7T [2]), which will make the ratio of communication much higher than our experimental results.

BERT-large (340M)
ViT-Base (87M)

[1] Language Models are Few-Shot Learners. 2020
[2] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. 2021

Experimental Results
3. Breakdown for communication v.s. computation



1. Optimal chunk number in dynamic pipeline is different.
2. Timing of caching is important.

We automate these two optimization strategies.

The trade-off between accuracy and efficiency.

Experimental Results
4. Performance Analysis



Future works

Distributed training tasks that can be dynamic:

1. Elastic cloud-based distributed training system

2. Accelerating NAS in extremely large search space

3. Federated AutoML (NAS, HPO)

4. Cross-silo Federated Learning 

5. Pruning-based distributed training 

6. IoT device-based elastic edge training 



Ongoing Research - Mixture of Experts



Ongoing Research - Mixture of Experts



Outline: Distributed ML for Large-scale Models

● Part 1: Dynamic Distributed Training
PipeTransformer: Automated Elastic Pipelining for Distributed 
Training of Large-scale Models. ICML 2021
https://DistML.ai

● Part 2: Scalable Federated Learning
[Algorithm] Group Knowledge Transfer: Federated Learning of 
Large CNNs at the Edge. NeurIPS 2020

[System] FedML: A Research Library and Benchmark for 
Federated Machine Learning
(Best Paper Award, NeurIPS 2020 FL Workshop)

[Diverse Applications]
FedML Ecosystem: Ubiquitous Distributed Training for Diverse AI 
Applications at the Edge.
https://FedML.ai

https://distml.ai
https://fedml.ai


Fundamental Research to Alexa AI Applications

Model Compression 
for edge devices

Pretrained models
(BERT, ViT, etc)

1. Distributed Training
in GPU cluster

2. Federated Learning
at the edge



Goal: enabling secure collaborative learning at the edge

How to learn without data sharing?

Data is born at the 
edge



Introduction: Widely Interdisciplinary

Statistical 
Challenges

Trustworthy

System 
Constraints

Models and
Applications

distributed optimization
personalization and non-IID
transfer learning
un/semi-supervised learning
neural architecture search
continual learning/meta learning
...

preserving privacy
robust to adversarial attack
fairness
incentive mechanism
...

communication efficiency
computation efficiency
wireless communication
cloud computing
embedded training system
...

computer vision
natural language processing
data ming
IoT/5G
...

Federated
Learning

Conference Venues: NeurIPS, ICML, ICLR, MLSys, CVPR/ICCV/ECCV, ACL/EMNLP, AISTATS, AAAI



System Bottlenecks/Opportunities

❏ Resource-constrained FL (small edge models, 
large server models)

❏ Scalability: 1K users → 1M users
❏ Federated neural architecture search

Foundations of Algorithm Design

❏ User selection, optimal scaling
❏ Heterogeneity, personalization, and fairness
❏ Unsupervised federated learning

Trustworthy

❏ Secure and resilient model aggregation
❏ Adversarial users (data/model poisoning)
❏ Leveraging trusted computing environments



https://www.avestimehr.com/fedml
https://FedML.ai

https://www.avestimehr.com/fedml
https://fedml.ai


Overview



FedML System Capability

● Single process
● Runs on any server
● Good for small models 

(LR, 2CNN, Bi-LSTM)
● And small datasets

(FMNIST, Shakespeare)

● Multiple-processes in parallel
● Can be seamlessly distributed across 

nodes 
● Train big models (ResNet, MobileNet, 

Efficient Net, Transformer-based)
● And large datasets (CIFAR10/100, 

Google Landmark, COCO, ImageNet)

● Multiple processes with explicit 
message passing

● Great for resource constrained edge 
devices (Smartphone and IoT) - low 
memory, low computational power, 
limited communication bandwidth

● Python-centric simplicity



FedML Ecosystem



FedML Ecosystem

FedNLP FedCV FedGraphNN FedIoT



FedNLP



FedCV



FedGraphNN



FedGraphNN



FedIoT: “Internet of Things & 5G + Federated Learning”

[1] N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE PERVASIVE COMPUTING 2018

Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders [1]



FedML Community

Growth Statistics:

Slack Community Users: 640

GitHub Stars: 780
GitHub Forks: 216

GitHub Ranking in “Federated Learning”: 3 
(the first two are industry leaders: Tencent/WeBank, 
Google)

Short Paper won Best Paper Awards in NeurIPS 2020 
SpicyFL Workshop

fedml.slack.com



FedML System Overview



FedML-API - Simplicity is Our Key

# load data
dataset = load_data(args, args.dataset)
[train_data_num, test_data_num, train_data_global, test_data_global,
train_data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num] = dataset

# create model
model = create_model(args, model_name=args.model, output_dim=dataset[7])

# topology configuration
device = init_training_device(process_id, worker_number - 1, args.gpu_num_per_server)

# start "federated averaging (FedAvg)"
FedML_FedAvg_distributed(process_id, worker_number, device, comm,
                        model, train_data_num, train_data_global, test_data_global,
                        train_data_local_num_dict, train_data_local_dict, test_data_local_dict, args)

● FedAvg, FedAvg_Robustness, FedOpt (server optimizer), FedNova (client optimizer)
FedGKT, FedNAS, Decentralized FL, Vertical FL, Split Learning, etc.

Only 4 lines!



FedML Feature List
Dataset MNIST, Synthetic

Federated EMNIST; Shakespeare; Fed-CIFAR100; stackoverflow (NWP); 
CIFAR10, CIFAR100, CINIC10 (ImageNet+CIFAR10)
Google Landmark, COCO, ImageNet
Support non-IID partition tool for heterogeneous distribution 

Model LR, CNN (2 layers), RNN (Bi-LSTM), ResNet, MobileNet V3, EfficientNet 
Transformer/BERT, etc.

Federated Optimizers and 
Algorithms

FedAvg, FedOpt (server optimizer, ICLR 2021), FedNova (client 
optimizer, NeurIPS 2020), FedAvg_Robustness (NeurIPS 2020), 
FedGKT (NeurIPS 2020), FedNAS (CVPRw 2020), Turbo-Aggregate, 
Decentralized FL (NeurIPS 2020 FL), Vertical FL, Split Learning, etc
Support both cross-device and cross-silo settings.

Platform Supports Distributed Computing, IoT/Mobile, Standalone Simulation

Three computing paradigms, SOTA optimizers, various datasets and models!



FedML Feature List - Privacy/Security
Dataset MNIST, Synthetic

Federated EMNIST; Shakespeare; Fed-CIFAR100; stackoverflow (NWP); 
CIFAR10, CIFAR100, CINIC10 (ImageNet+CIFAR10)
Google Landmark, COCO, ImageNet
Support non-IID partition tool for heterogeneous distribution 

Model LR, CNN (2 layers), RNN (Bi-LSTM), ResNet, MobileNet V3, EfficientNet 
Transformer/BERT, etc.

Federated Optimizers and 
Algorithms

FedAvg, FedOpt (server optimizer, ICLR 2021), FedNova (client 
optimizer, NeurIPS 2020), FedAvg_Robustness (NeurIPS 2020), 
FedGKT (NeurIPS 2020), FedNAS (CVPRw 2020), Turbo-Aggregate, 
Decentralized FL (NeurIPS 2020 FL), Vertical FL, Split Learning, etc
Support both cross-device and cross-silo settings.

Platform Supports Distributed Computing, IoT/Mobile, Standalone Simulation

Three computing paradigms, SOTA optimizers, various datasets and models!



System Config diversity
Diverse topologies: 



Deployment for Cross-silo FL

FL Central Server (weight/gradient aggregation)

Hospital 1

(4 GPUs) (4 GPUs)

(1 GPU)

Hospital 2



FedML Live Demo

http://www.youtube.com/watch?v=EDNOMijTQ-E


FedML-core - Worker-oriented Programming 
Interface



FedML-core - Trainer Customization

# load data
dataset = load_data(args, args.dataset)
[train_data_num, test_data_num, train_data_global, 
test_data_global,
train_data_local_num_dict, train_data_local_dict, 
test_data_local_dict, class_num] = dataset

# create model
model = create_model(args, model_name=args.model, 

  output_dim=dataset[7])

# topology configuration
device = init_training_device(process_id, worker_number - 1, 

     args.gpu_num_per_server)

# start "federated averaging (FedAvg)"
FedML_FedAvg_distributed(process_id, worker_number, device, 

Comm, model, train_data_num, 
train_data_global, test_data_global,

                        train_data_local_num_dict, 
train_data_local_dict, 
test_data_local_dict, args,           

model_trainer)

class ModelTrainer(ABC):
   """
   def __init__(self, model):
       self.model = model
       self.id = 0

   def set_id(self, 
trainer_id):
       self.id = trainer_id

   @abstractmethod
   def set_model_params(self, 
                  
model_parameters):
       Pass

   @abstractmethod
   def train(self, 
train_data,  
            device, args):
       Pass

   @abstractmethod
   def test(self, test_data,  
device,
           args):
       pass



class ModelTrainer(ABC):
   """
   def __init__(self, model):
       self.model = model
       self.id = 0

   def set_id(self, 
trainer_id):
       self.id = trainer_id

   @abstractmethod
   def set_model_params(self, 
                  
model_parameters):
       Pass

   @abstractmethod
   def train(self, 
train_data,  
            device, args):
       Pass

   @abstractmethod
   def test(self, test_data,  
device,
           args):
       pass

FedML supports diverse platforms

Write once, run everywhere:
Reusing the same trainer class definition in three platforms
Let the library do the algorithm and platform-specific implementation



FedGKT: An Algorithmic Example of FedML: 

FedGKT is a new distributed training framework, and requires specific communication protocol (soft 
labels, hidden features, etc) and training paradigms (training models in client and server alternatively).

Step 1: Model weight

Step 2&3: Hidden Representation, Logits (soft labels)



Group Knowledge Transfer: 
Federated Learning of Large CNNs at the Edge

 Chaoyang He    Murali Annavaram   Salman Avestimehr
PhD Student, USC              Professor, USC Professor, USC

https://fedml.ai



● Extremely Large DNN: the SOTA model in NLP (Natural Language Processing) domain has billion or even trillion of 
parameters [1], and the SOTA model in CV (Computer Vision) domain has around 4 million parameters [2].

[1] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019-10. https://arxiv.org/abs/1910.10683

[2] MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation. CVPR 2020
Chaoyang He, Haishan Ye, Li Shen, Tong Zhang. 

Introduction

https://arxiv.org/abs/1910.10683


Edge devices are personal  devices with 
limited memory and storage and 

computation capabilities

Motivation



Motivation

Challenges of Federated Deep Learning - Training large modern 
DNN (ResNet, Transformers, etc) on-device is difficult due to data 
and system resource constraints:

1. Limited memory and computation (no GPU accelerator)
2. Limited bandwidth and unstable wireless communication
3. Data heterogeneity
 

How to efficiently and effectively train large DNN over resource-constrained edge devices?



Related Works: a Basic Formulation of Federated Learning

Server

Client 1 Client 2 Client K...

WData What if W is DNN?

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017



Related Works: a Basic Formulation of Federated Learning

Server

Client 1 Client 2 Client K...

WData What if W is DNN?

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017



Related Works: Split Learning

[2] Poirot et al., Split Learning for collaborative deep learning in healthcare, NeurIPS 2019



Related Works
Federated Learning:
Pros: 
1) exchanging gradients/models periodically; 
2) reusing distributed optimization methods in conventional distributed training in the 
data center environment.
Cons: 
1) Communication cost for each gradient/model is much higher than a hidden vector
2) training large DNN models on device is prohibited due to resource constraints.

Split Learning:
Pros: 
1) lower communication cost than FL: only exchanging the hidden vector of each 
training sample/mini-batch; 
2) a portion of the entire DNN architecture is trainable on resource constrained 
devices. 3) hidden vector is more secure to resist adversarial attacks.
Cons:
1) Do not support periodical synchronization, which prohibits off-the-shell optimization 
methods; 2) the straggler problem becomes more severe because one SGD iteration 
has been split into four rounds of communication.



Insights

Can we design a learning framework that leverages advantages of FL and SL?

To be more specific, is there a framework that supports:

1. Computation Efficient: Computation-efficient on-device training (trainable) like 
SL

2. Communication Efficient: Exchanging hidden vectors during training like SL 
3. Low Communication Frequency: Supporting periodical training like FL (local 

SGD)
4. No Accuracy Compromise: Preserving or outperforming the model accuracy of 

FL and SL  



 Transfer knowledge from many small networks to a larger one which has 
more capacity to obtain high accuracy

Our Idea

1. Transfer Data (Centralized Training)
2. Transfer Model (Federated Learning)

3. Can we only transfer “knowledge”?



FedGKT Overview



First Formulation

find a good and small feature extractor

Problem Formulation



First Formulation: ideal

find a good and small feature extractor
find a great and large classifier by leveraging 

users’ feature extractors

Problem Formulation



First Formulation: ideal

find a good and small feature extractor
find a great and large classifier by leveraging 

users’ feature extractors

• light-weight model at the clients
• large/effective model at the server
• small communication requirement: 

feature size is much smaller than the 
model size

Problem Formulation



First Formulation: practical

find a good and small feature extractor
find a great and large classifier by leveraging 

users’ feature extractors

• users can’t train good feature extractors 
alone with its small data

• users’ poor feature extractors also mess 
up the training at the server

Problem Formulation



Knowledge Distillation
● Bidirectional Knowledge Distillation (CVPR 2018, ICLR 2018)

teacher/student

student/teacher

Transfer from 2 to 1:



CE loss of the classifier CE loss of the classifier 

Reformulation as Bidirectional Knowledge Transfer

 

Problem Formulation



CE loss of the classifier CE loss of the classifier 

Reformulation as Bidirectional Knowledge Transfer

 

Problem Formulation



CE loss of the classifier CE loss of the classifier 

Reformulation as Bidirectional Knowledge Transfer

users bring their predictions closer to server model’s prediction
🡺 users absorb the server model knowledge to improve feature extraction
🡺 server absorbs users’ knowledge to train a better classifier

Problem Formulation



FedGKT: Alternating Minimization

Server

Client



Method: Distributed Optimization Methods

1. Local SGD with Momentum

2. Cross-round Learning Rate Scheduler



Method: Model Architecture

Conv1+BN1+ReLU1

x 108

Pooling + FC

“soft label”

Loss_kd(                  ,                ) + Loss_true
Conv1+BN1+ReLU1

Pooling + FC

x 108

Pooling + FC

Client Model, a tiny model!

Server Model

...



System Design and Implementation

FedGKT is a new distributed training framework, and requires specific communication protocol (soft 
labels, hidden features, etc) and training paradigms (training models in client and server alternatively).

Step 1: Model weight

Step 2&3: Hidden Representation, Logits (soft labels)



Homepage: https://fedml.ai

With the help of FedML library, we can easily implement FedGKT algorithm and conduct various 
experiments with different datasets and models.

System Design and Implementation

(Best Paper Award, NeurIPS 2020, FL Workshop)

https://fedml.ai


Experimental Results: Test Accuracy



Experimental Results: Non-IID



Experimental Results: Efficiency

FedGKT demands 9 to 17 times less computational power (FLOPs) on edge devices 
and requires 54 to 105 times fewer parameters in the edge CNN



Experimental Results: Ablation Study



Experimental Results: Ablation Study



Experimental Results: Ablation Study



Contributions
FedGKT is the early work that explores federated deep learning and transfer 
knowledge (not data and model) on edge devices.

● FedGKT is memory and computation efficient, similar to SL

● FedGKT can train in a local SGD manner like FedAvg to reduce the 
communication frequency

● Exchanging hidden features as in SL, as opposed to exchanging the entire 
model as in FedAvg, reduces the communication bandwidth requirement

● FedGKT is public data-free knowledge transfer method

● FedGKT naturally supports asynchronous training, which circumvents the 
severe synchronization issue in SL



● Exchanging hidden features provides “some” privacy guarantees to the users

🡺 Providing strong privacy/security guarantees for FedGKT is an interesting next step
🡺 Leveraging Secure Aggregation in FedGKT?

Future Works

...

training ResNet-56 at the 
server

secure?



● Extend FedGKT to Transformer Models

Future Works



● FedGKT also allows for different models to be used at each user

🡺 Providing model adaptation and personalization at each user is also another next step

Future Works

FedGKT



Long-term Goal

FedGKT is a starting point of our goal towards “Knowledgeable Communication”: 
1) AI Agent (ML model) in Internet can freely exchange/transfer/share their “knowledge” 
without disclosing a large amount of raw data or model; 
2) ML models can be equipped with communication networking interface to exchange 
neural representation with other models in a decentralized Internet.

1. Transfer Data (Centralized Training)
2. Transfer Model (Federated Learning)

3. Can we only transfer “knowledge”?



Distributed Training v.s. Federated Learning

In essence, three methodologies are useful to both:

1. Dynamic system and stochastic ML lead to 
complicated interaction between these objectives.

2. Trade-off among multiple objectives including 
accuracy, efficiency, security, and privacy.

3. On demand: focus on the key demand for 
different use cases (ML applications), optimizing 
one of the objectives but not deteriorating the 
others. 

PipeTransformer, ICML 2021

Group Knowledge Transfer, NeurIPS 2020



System Bottlenecks/Opportunities

❏ Resource-constrained FL (small edge models, large 
server models)

❏ Scalability: 1K users → 1M users
❏ Federated neural architecture search

Foundations of Algorithm Design

❏ User selection, optimal scaling
❏ Heterogeneity, personalization, and fairness
❏ Unsupervised federated learning

Trustworthy

❏ Secure and resilient model aggregation
❏ Adversarial users (data/model poisoning)
❏ Leveraging trusted computing environments

Federated Learning



Ongoing Works 1: Self-supervised Federated Learning



Ongoing Works 1: Self-supervised Federated Learning

Elementary Result: Contrastive Loss with SimSiam Framework in FL setting (Weighted Averaging) can 
archive top-1 accuracy 91% in CIFAR-10 (non-IID) using ResNet-18!

Important optimization tricks: 1) local SGD with momentum 2) cross-round learning rate scheduler



Ongoing Work 2 - Joint Adaptation to Data and System 
Heterogeneity with FedNAS



Application/Model

Algorithm/Theory

System/Infrastructure

FedCV , FedNLP (preparing for EMNLP 2021) FedGraphNN (ICLR 2021 
workshop, MLSys 2021 workshop)

FedGKT (NeurIPS’2020): 
resource constrained FL

FedNAS, MiLeNAS (CVPR’2020): 
data heterogeneity and automation 

OnlinePushSum 
(NeurIPS’2020 Workshop): 
Single-sided Trust in 
Decentralized Topology

FedML.ai (NeurIPS 2020, FL Workshop, Best Paper Award): 
fundamental system, an open source library for FL research

PipeTransformer (ICML’2021): 
elastic distributed training for giant models (Transformers)

Vision/Review

Advances and Open Problems in Federated Learning
FnTML (Foundation and Trend in Machine Learning), Vol3, 2021

FedML and DistML Ecosystem


