
Distributed ML System for Large-scale Models:
Dynamic Distributed Training and Scalable Federated Learning

 Chaoyang He
PhD student (2018-present), CS, USC

Former R&D Manager and Staff
Software Engineer at Tencent

Salman Avestimehr
Professor, ECE&CS, USC

Director, USC-Amazon Trusted ML Center

Mahdi Soltanolkotabi
Associate Professor

CS & ECE, USC

Fundamental Research to Alexa AI Applications

Model Compression
for edge devices

Pretrained models
(BERT, ViT, etc)

1. Distributed Training
in GPU cluster

2. Federated Learning
at the edge

Distributed Training v.s. Federated Learning

In the Federated Learning setting, the data is distributed
across millions of devices in a highly uneven fashion. These
devices have low computational compatibility, significantly
higher-latency, lower-throughput connections

--- Federated Learning and Open Problems, Foundations and Trends in Machine
Learning (FnTML) 2021; …, Chaoyang He, and many Googlers

1,600,000,000

Distributed Training v.s. Federated Learning

Goals: data and model privacy; mitigate the difficulty of data
centralization; ubiquitous ML in 5G/IoT future.

Challenges:
1. data heterogeneity and label deficiency
2. system heterogeneity; resource-constraint; scalability
3. trustworthiness: security, privacy, fairness,

personalization, interpretability, etc

Goals: training large model in reasonable time, energy cost, and
hardware resources to obtain a higher accuracy

Challenge:
1. communication cost
2. memory constraints
3. computational efficiency
4. straggler/failure

Distributed Training v.s. Federated Learning

In essence, three methodologies are useful to both:

1. Dynamic system and stochastic ML lead to
complicated interaction between these objectives.

2. On demand: focus on the key demand for
different use cases (ML applications), optimizing
one of the objectives but not deteriorating the
others.

3. Trade-off among multiple objectives including
accuracy, efficiency, security, and privacy.

PipeTransformer, ICML 2021

Group Knowledge Transfer, NeurIPS 2020

FedML Lib and Ecosystem, NeurIPS
2020 FL workshop, Best Paper Award

Outline: Distributed ML for Large-scale Models

● Part 1: Dynamic Distributed Training
PipeTransformer: Automated Elastic Pipelining for Distributed
Training of Large-scale Models. ICML 2021
https://DistML.ai

● Part 2: Scalable Federated Learning
[Algorithm] Group Knowledge Transfer: Federated Learning of
Large CNNs at the Edge. NeurIPS 2020

[System] FedML: A Research Library and Benchmark for
Federated Machine Learning
(Best Paper Award, NeurIPS 2020 FL Workshop)

[Diverse Applications]
FedML Ecosystem: Ubiquitous Distributed Training for Diverse AI
Applications at the Edge.
https://FedML.ai

https://distml.ai
https://fedml.ai

PipeTransformer: Automated Elastic Pipelining for
Distributed Training of Large-scale Models

 Chaoyang He
PhD student (2018-present), CS, USC

Former R&D Manager at Tencent
Researcher, Tencent AI Lab

Salman Avestimehr
Professor, ECE&CS, USC

Director, USC-Amazon ML Center

Shen Li
Research Scientist, Facebook AI
Team Lead, PyTorch Distributed

CS PhD, UIUC

Mahdi Soltanolkotabi
Associate Professor

CS, ECE, USC

https://DistML.ai
https://chaoyanghe.com/pipetransformer/

https://distml.ai
https://chaoyanghe.com/pipetransformer/

https://pytorch.org/blog/pipetransformer-automated-elastic-pipelining/

https://pytorch.org/blog/pipetransformer-automated-elastic-pipelining/

Outline
● Background and Related Works

● Motivation and Ideas

● Overall Design (Animation)

● AutoFreeze: Freeze Algorithm

● AutoPipe: Elastic Pipelining

● AutoDP: Spawning More Pipeline Replicas

● AutoCache: Cross-pipeline Caching

● Experimental Results

● Future Works

Background

After 2021-06: 100 Trillion?

The parameter number of deep neural networks (Transformers) is dramatically increasing!

Background

Background

*Note: This page is from AAAI 2021 Tutorial (https://sites.google.com/view/aaai-2021-tutorial-ah9/home)

https://sites.google.com/view/aaai-2021-tutorial-ah9/home

Background

*Note: This page is from AAAI 2021 Tutorial (https://sites.google.com/view/aaai-2021-tutorial-ah9/home)

https://sites.google.com/view/aaai-2021-tutorial-ah9/home

Background

*Note: This page is from AAAI 2021 Tutorial (https://sites.google.com/view/aaai-2021-tutorial-ah9/home)

https://sites.google.com/view/aaai-2021-tutorial-ah9/home

Background

Related Works

Data and Model Parallel Data Inter-Batch:
ByteScheduler (SOSP’19)
Crossbow (VLDB’19)

Data Intra-Batch:
PT Pipe
PT DDP (VLDB’20)
GPipe (NeurlPS’19)

Model Inter-Operator
PT RPC
TF + gRPC (EuroSys’19)

PipeDream (SOSP’19)
HetPipe (ATC’20)

PT RPC + DDP
PT RPC + Pipe
Parallax (EuroSys’19)
BytePS (OSDI’20)

Model Intra-Operator
Mesh-TF (NeurlPS’18)
TouFu (EuroSys’19)

FlexFlow (MLSys’19)
GPT-3 (NeurlPS’20)
ZeRO/DeepSpeed (SC’20)

1. System-wise: Distributed Training System Design and Optimization

Pipeline Parallelism Hybrid of Data Parallelism and Pipeline Parallelism

Related Works

Related Works

Intra-layer and inter-layer model parallelism.
https://FlexFlow.ai

Model Parallelism

Related Works

1) Architecture Optimization Manually:
LinFormer (AAAI’2021, Best Paper Award)

2) Automated Architecture Design:
Neural Architecture Search: FBNet (CVPR’ 2019, 400+ citations)

3) Spare Training: pruning, quantization, etc
Lottery Ticket Hypothesis (ICLR 2019, Best Paper Award)

4) Progressive Training

5) SGD-based Distributed Optimization:
LARS (ICLR 2020): Large Batch Optimization for Deep Learning: Training BERT in 76 minutes

 ...

2. ML-wise: Model Architecture and Training Algorithm

Our Motivation and Idea

Elastic Distributed Training System!

1. (Sys) Distributed Training System 2. (ML) Model Architecture and Training Algorithm

Pro:
Efficiency in Computation/Communication/Memory

Con:
View the model/SGD optimization as black box

Pro:
Improve the efficiency mathematically, fundamentally

Con:
1. Lack of system design to amplify the algorithmic advantages
2. the model-wise optimization is not friendly to distributed training

What if we co-design?

1. Progressive Training
2. Dynamic Neural Networks

(https://arxiv.org/pdf/2102.04906.pdf)

 Hybrid of Pipeline and Data Parallelism

Progressive Training

[1] Freeze Training: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. NeurIPS 2017
[2] Efficient Training of BERT by Progressively Stacking. ICML 2019
[3] Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping. NeurIPS 2020. Minjia Zhang
[4] On the Transformer Growth for Progressive BERT Training. NACCL 2021

Freeze Training [1] Progressive Stacking [2]

Pipeline Parallelism Hybrid of Data Parallelism and Pipeline Parallelism

Distributed Training System

Key observations when applying progressive training (e.g., freeze training) to the above training systems:
1. The computation cost becomes unbalanced in pipeline-parallelism
2. The memory cost is reduced gradually
3. The communication cost among DP workers should be reduced gradually

Overall Design

The process of PipeTransformer’s automated and elastic pipelining

PipeTransformer Animation

PipeTransformer Animation

PipeTransformer Animation

PipeTransformer Animation

PipeTransformer Animation

PipeTransformer Animation

PipeTransformer Animation

Overall Design

https://DistML.ai
https://chaoyanghe.com/pipetransformer/

https://distml.ai
https://chaoyanghe.com/pipetransformer/

Freeze Algorithm

AutoPipe: Elastic Pipelining
(1) Basic Usage of PyTorch Pipeline

trade-off of computational
load, communication cost, and
memory consumption among
partitions (each partition is
loaded to one GPU)

AutoPipe: Elastic Pipelining
(1) Pipeline Partitioning Strategy

AutoPipe: Elastic Pipelining

To avoid extensive memory profiling, the compression algorithm uses the parameter size as a proxy for the training memory
footprint.

(2) Pipeline Compression

AutoPipe: Elastic Pipelining

When the pipeline compressed (K becomes smaller), the bubble is shrunk (left figure)

However, we find that the micro-batches size (M) also needs to be adjusted accordingly (right figure shows the optimal M
in different K).

(3) Dynamic Number of Micro Batches

1. A trade-off in Pipeline partition
2. Pipeline compression
3. optimal micro-batches chunk number (M)

AutoPipe: Elastic Pipelining
(4) AutoPipe algorithm: put all together

AutoDP:
Spawning More Pipeline Replicas

Key challenges when adding more pipeline on the fly of training:

1) DDP Communication: Collective communications in PyTorch DDP requires static membership, which prevents
new pipelines from connecting with existing ones;

2) State Synchronization: newly activated processes must be consistent with existing pipelines in the training
progress (e.g., epoch number and learning rate), weights and optimizer states, the boundary of frozen layers, and
pipeline GPU range;

3) Dataset Redistribution: the dataset should be re-balanced to match a dynamic number of pipelines. This not
only avoids stragglers but also ensures that gradients from all DDP processes are equally weighted.

AutoDP:
Spawning More Pipeline Replicas

Our idea:
1. creating two process groups. Each process handles one pipeline
2. the active training process group (yellow) handles the training.
3. the message process group (purple) handles State Synchronization and Dataset Redistribution by messaging
passing between two groups with MPI communication.

AutoDP:
Spawning More Pipeline Replicas

AutoDP:
Spawning More Pipeline Replicas

In this example, the first 3 layers (purple) at two time steps T1 and T2(epochs) are the same computation, so T2 can reuse the
caching from T1.

AutoCache:
Cross-pipeline Caching

1. Overall Speedup

Evaluation on Various datasets and models, including tasks in both CV and NLP.

Experimental Results

Key takeaway:
1. the main speedup is the result of elastic pipelining which is achieved through the joint use of AutoPipe and AutoDP
(purple)

2. AutoCache’s contribution is amplified by AutoDP (green v.s. blue: more parallel DP workers can use caching)

3. freeze training alone without system-wise adjustment even downgrades the training speed (yellow)
(the underlying mechanism of PyTorch is not tailored for freeze training, forcing CUDACachingAllocator to split blocks or launch new
memory allocations)

Experimental Results
2. Breakdown for speedup

Communication Infrastructure: InfiniBand CX353A where cross-machine bandwidth is 5GB/s, and GPU-to-GPU bandwidth within a machine (PCI 3.0,
16 lanes) is 15.754GB/s.

Key takeaway:
1. Communication cost is not the main bottleneck when we use InfiniBand for medium-scale models (< 500M such as
ViT-base and BERT-large), but it is still non-trivial even under freeze training.
2. Recent progress in NLP and CV has scaled up the model size to billion/trillion-level (GPT-3 - 175B [1], Switch
Transformer - 1.7T [2]), which will make the ratio of communication much higher than our experimental results.

BERT-large (340M)
ViT-Base (87M)

[1] Language Models are Few-Shot Learners. 2020
[2] Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. 2021

Experimental Results
3. Breakdown for communication v.s. computation

1. Optimal chunk number in dynamic pipeline is different.
2. Timing of caching is important.

We automate these two optimization strategies.

The trade-off between accuracy and efficiency.

Experimental Results
4. Performance Analysis

Future works

Distributed training tasks that can be dynamic:

1. Elastic cloud-based distributed training system

2. Accelerating NAS in extremely large search space

3. Federated AutoML (NAS, HPO)

4. Cross-silo Federated Learning

5. Pruning-based distributed training

6. IoT device-based elastic edge training

Ongoing Research - Mixture of Experts

Ongoing Research - Mixture of Experts

Outline: Distributed ML for Large-scale Models

● Part 1: Dynamic Distributed Training
PipeTransformer: Automated Elastic Pipelining for Distributed
Training of Large-scale Models. ICML 2021
https://DistML.ai

● Part 2: Scalable Federated Learning
[Algorithm] Group Knowledge Transfer: Federated Learning of
Large CNNs at the Edge. NeurIPS 2020

[System] FedML: A Research Library and Benchmark for
Federated Machine Learning
(Best Paper Award, NeurIPS 2020 FL Workshop)

[Diverse Applications]
FedML Ecosystem: Ubiquitous Distributed Training for Diverse AI
Applications at the Edge.
https://FedML.ai

https://distml.ai
https://fedml.ai

Fundamental Research to Alexa AI Applications

Model Compression
for edge devices

Pretrained models
(BERT, ViT, etc)

1. Distributed Training
in GPU cluster

2. Federated Learning
at the edge

Goal: enabling secure collaborative learning at the edge

How to learn without data sharing?

Data is born at the
edge

Introduction: Widely Interdisciplinary

Statistical
Challenges

Trustworthy

System
Constraints

Models and
Applications

distributed optimization
personalization and non-IID
transfer learning
un/semi-supervised learning
neural architecture search
continual learning/meta learning
...

preserving privacy
robust to adversarial attack
fairness
incentive mechanism
...

communication efficiency
computation efficiency
wireless communication
cloud computing
embedded training system
...

computer vision
natural language processing
data ming
IoT/5G
...

Federated
Learning

Conference Venues: NeurIPS, ICML, ICLR, MLSys, CVPR/ICCV/ECCV, ACL/EMNLP, AISTATS, AAAI

System Bottlenecks/Opportunities

❏ Resource-constrained FL (small edge models,
large server models)

❏ Scalability: 1K users → 1M users
❏ Federated neural architecture search

Foundations of Algorithm Design

❏ User selection, optimal scaling
❏ Heterogeneity, personalization, and fairness
❏ Unsupervised federated learning

Trustworthy

❏ Secure and resilient model aggregation
❏ Adversarial users (data/model poisoning)
❏ Leveraging trusted computing environments

https://www.avestimehr.com/fedml
https://FedML.ai

https://www.avestimehr.com/fedml
https://fedml.ai

Overview

FedML System Capability

● Single process
● Runs on any server
● Good for small models

(LR, 2CNN, Bi-LSTM)
● And small datasets

(FMNIST, Shakespeare)

● Multiple-processes in parallel
● Can be seamlessly distributed across

nodes
● Train big models (ResNet, MobileNet,

Efficient Net, Transformer-based)
● And large datasets (CIFAR10/100,

Google Landmark, COCO, ImageNet)

● Multiple processes with explicit
message passing

● Great for resource constrained edge
devices (Smartphone and IoT) - low
memory, low computational power,
limited communication bandwidth

● Python-centric simplicity

FedML Ecosystem

FedML Ecosystem

FedNLP FedCV FedGraphNN FedIoT

FedNLP

FedCV

FedGraphNN

FedGraphNN

FedIoT: “Internet of Things & 5G + Federated Learning”

[1] N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE PERVASIVE COMPUTING 2018

Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders [1]

FedML Community

Growth Statistics:

Slack Community Users: 640

GitHub Stars: 780
GitHub Forks: 216

GitHub Ranking in “Federated Learning”: 3
(the first two are industry leaders: Tencent/WeBank,
Google)

Short Paper won Best Paper Awards in NeurIPS 2020
SpicyFL Workshop

fedml.slack.com

FedML System Overview

FedML-API - Simplicity is Our Key

load data
dataset = load_data(args, args.dataset)
[train_data_num, test_data_num, train_data_global, test_data_global,
train_data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num] = dataset

create model
model = create_model(args, model_name=args.model, output_dim=dataset[7])

topology configuration
device = init_training_device(process_id, worker_number - 1, args.gpu_num_per_server)

start "federated averaging (FedAvg)"
FedML_FedAvg_distributed(process_id, worker_number, device, comm,
 model, train_data_num, train_data_global, test_data_global,
 train_data_local_num_dict, train_data_local_dict, test_data_local_dict, args)

● FedAvg, FedAvg_Robustness, FedOpt (server optimizer), FedNova (client optimizer)
FedGKT, FedNAS, Decentralized FL, Vertical FL, Split Learning, etc.

Only 4 lines!

FedML Feature List
Dataset MNIST, Synthetic

Federated EMNIST; Shakespeare; Fed-CIFAR100; stackoverflow (NWP);
CIFAR10, CIFAR100, CINIC10 (ImageNet+CIFAR10)
Google Landmark, COCO, ImageNet
Support non-IID partition tool for heterogeneous distribution

Model LR, CNN (2 layers), RNN (Bi-LSTM), ResNet, MobileNet V3, EfficientNet
Transformer/BERT, etc.

Federated Optimizers and
Algorithms

FedAvg, FedOpt (server optimizer, ICLR 2021), FedNova (client
optimizer, NeurIPS 2020), FedAvg_Robustness (NeurIPS 2020),
FedGKT (NeurIPS 2020), FedNAS (CVPRw 2020), Turbo-Aggregate,
Decentralized FL (NeurIPS 2020 FL), Vertical FL, Split Learning, etc
Support both cross-device and cross-silo settings.

Platform Supports Distributed Computing, IoT/Mobile, Standalone Simulation

Three computing paradigms, SOTA optimizers, various datasets and models!

FedML Feature List - Privacy/Security
Dataset MNIST, Synthetic

Federated EMNIST; Shakespeare; Fed-CIFAR100; stackoverflow (NWP);
CIFAR10, CIFAR100, CINIC10 (ImageNet+CIFAR10)
Google Landmark, COCO, ImageNet
Support non-IID partition tool for heterogeneous distribution

Model LR, CNN (2 layers), RNN (Bi-LSTM), ResNet, MobileNet V3, EfficientNet
Transformer/BERT, etc.

Federated Optimizers and
Algorithms

FedAvg, FedOpt (server optimizer, ICLR 2021), FedNova (client
optimizer, NeurIPS 2020), FedAvg_Robustness (NeurIPS 2020),
FedGKT (NeurIPS 2020), FedNAS (CVPRw 2020), Turbo-Aggregate,
Decentralized FL (NeurIPS 2020 FL), Vertical FL, Split Learning, etc
Support both cross-device and cross-silo settings.

Platform Supports Distributed Computing, IoT/Mobile, Standalone Simulation

Three computing paradigms, SOTA optimizers, various datasets and models!

System Config diversity
Diverse topologies:

Deployment for Cross-silo FL

FL Central Server (weight/gradient aggregation)

Hospital 1

(4 GPUs) (4 GPUs)

(1 GPU)

Hospital 2

FedML Live Demo

http://www.youtube.com/watch?v=EDNOMijTQ-E

FedML-core - Worker-oriented Programming
Interface

FedML-core - Trainer Customization

load data
dataset = load_data(args, args.dataset)
[train_data_num, test_data_num, train_data_global,
test_data_global,
train_data_local_num_dict, train_data_local_dict,
test_data_local_dict, class_num] = dataset

create model
model = create_model(args, model_name=args.model,

 output_dim=dataset[7])

topology configuration
device = init_training_device(process_id, worker_number - 1,

 args.gpu_num_per_server)

start "federated averaging (FedAvg)"
FedML_FedAvg_distributed(process_id, worker_number, device,

Comm, model, train_data_num,
train_data_global, test_data_global,

 train_data_local_num_dict,
train_data_local_dict,
test_data_local_dict, args,

model_trainer)

class ModelTrainer(ABC):
 """
 def __init__(self, model):
 self.model = model
 self.id = 0

 def set_id(self,
trainer_id):
 self.id = trainer_id

 @abstractmethod
 def set_model_params(self,

model_parameters):
 Pass

 @abstractmethod
 def train(self,
train_data,
 device, args):
 Pass

 @abstractmethod
 def test(self, test_data,
device,
 args):
 pass

class ModelTrainer(ABC):
 """
 def __init__(self, model):
 self.model = model
 self.id = 0

 def set_id(self,
trainer_id):
 self.id = trainer_id

 @abstractmethod
 def set_model_params(self,

model_parameters):
 Pass

 @abstractmethod
 def train(self,
train_data,
 device, args):
 Pass

 @abstractmethod
 def test(self, test_data,
device,
 args):
 pass

FedML supports diverse platforms

Write once, run everywhere:
Reusing the same trainer class definition in three platforms
Let the library do the algorithm and platform-specific implementation

FedGKT: An Algorithmic Example of FedML:

FedGKT is a new distributed training framework, and requires specific communication protocol (soft
labels, hidden features, etc) and training paradigms (training models in client and server alternatively).

Step 1: Model weight

Step 2&3: Hidden Representation, Logits (soft labels)

Group Knowledge Transfer:
Federated Learning of Large CNNs at the Edge

 Chaoyang He Murali Annavaram Salman Avestimehr
PhD Student, USC Professor, USC Professor, USC

https://fedml.ai

● Extremely Large DNN: the SOTA model in NLP (Natural Language Processing) domain has billion or even trillion of
parameters [1], and the SOTA model in CV (Computer Vision) domain has around 4 million parameters [2].

[1] Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. 2019-10. https://arxiv.org/abs/1910.10683

[2] MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation. CVPR 2020
Chaoyang He, Haishan Ye, Li Shen, Tong Zhang.

Introduction

https://arxiv.org/abs/1910.10683

Edge devices are personal devices with
limited memory and storage and

computation capabilities

Motivation

Motivation

Challenges of Federated Deep Learning - Training large modern
DNN (ResNet, Transformers, etc) on-device is difficult due to data
and system resource constraints:

1. Limited memory and computation (no GPU accelerator)
2. Limited bandwidth and unstable wireless communication
3. Data heterogeneity

How to efficiently and effectively train large DNN over resource-constrained edge devices?

Related Works: a Basic Formulation of Federated Learning

Server

Client 1 Client 2 Client K...

WData What if W is DNN?

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017

Related Works: a Basic Formulation of Federated Learning

Server

Client 1 Client 2 Client K...

WData What if W is DNN?

[1] McMahan et al., Communication-Efficient Learning of Deep Networks from Decentralized Data, AISTATS 2017

Related Works: Split Learning

[2] Poirot et al., Split Learning for collaborative deep learning in healthcare, NeurIPS 2019

Related Works
Federated Learning:
Pros:
1) exchanging gradients/models periodically;
2) reusing distributed optimization methods in conventional distributed training in the
data center environment.
Cons:
1) Communication cost for each gradient/model is much higher than a hidden vector
2) training large DNN models on device is prohibited due to resource constraints.

Split Learning:
Pros:
1) lower communication cost than FL: only exchanging the hidden vector of each
training sample/mini-batch;
2) a portion of the entire DNN architecture is trainable on resource constrained
devices. 3) hidden vector is more secure to resist adversarial attacks.
Cons:
1) Do not support periodical synchronization, which prohibits off-the-shell optimization
methods; 2) the straggler problem becomes more severe because one SGD iteration
has been split into four rounds of communication.

Insights

Can we design a learning framework that leverages advantages of FL and SL?

To be more specific, is there a framework that supports:

1. Computation Efficient: Computation-efficient on-device training (trainable) like
SL

2. Communication Efficient: Exchanging hidden vectors during training like SL
3. Low Communication Frequency: Supporting periodical training like FL (local

SGD)
4. No Accuracy Compromise: Preserving or outperforming the model accuracy of

FL and SL

 Transfer knowledge from many small networks to a larger one which has
more capacity to obtain high accuracy

Our Idea

1. Transfer Data (Centralized Training)
2. Transfer Model (Federated Learning)

3. Can we only transfer “knowledge”?

FedGKT Overview

First Formulation

find a good and small feature extractor

Problem Formulation

First Formulation: ideal

find a good and small feature extractor
find a great and large classifier by leveraging

users’ feature extractors

Problem Formulation

First Formulation: ideal

find a good and small feature extractor
find a great and large classifier by leveraging

users’ feature extractors

• light-weight model at the clients
• large/effective model at the server
• small communication requirement:

feature size is much smaller than the
model size

Problem Formulation

First Formulation: practical

find a good and small feature extractor
find a great and large classifier by leveraging

users’ feature extractors

• users can’t train good feature extractors
alone with its small data

• users’ poor feature extractors also mess
up the training at the server

Problem Formulation

Knowledge Distillation
● Bidirectional Knowledge Distillation (CVPR 2018, ICLR 2018)

teacher/student

student/teacher

Transfer from 2 to 1:

CE loss of the classifier CE loss of the classifier

Reformulation as Bidirectional Knowledge Transfer

Problem Formulation

CE loss of the classifier CE loss of the classifier

Reformulation as Bidirectional Knowledge Transfer

Problem Formulation

CE loss of the classifier CE loss of the classifier

Reformulation as Bidirectional Knowledge Transfer

users bring their predictions closer to server model’s prediction
🡺 users absorb the server model knowledge to improve feature extraction
🡺 server absorbs users’ knowledge to train a better classifier

Problem Formulation

FedGKT: Alternating Minimization

Server

Client

Method: Distributed Optimization Methods

1. Local SGD with Momentum

2. Cross-round Learning Rate Scheduler

Method: Model Architecture

Conv1+BN1+ReLU1

x 108

Pooling + FC

“soft label”

Loss_kd(,) + Loss_true
Conv1+BN1+ReLU1

Pooling + FC

x 108

Pooling + FC

Client Model, a tiny model!

Server Model

...

System Design and Implementation

FedGKT is a new distributed training framework, and requires specific communication protocol (soft
labels, hidden features, etc) and training paradigms (training models in client and server alternatively).

Step 1: Model weight

Step 2&3: Hidden Representation, Logits (soft labels)

Homepage: https://fedml.ai

With the help of FedML library, we can easily implement FedGKT algorithm and conduct various
experiments with different datasets and models.

System Design and Implementation

(Best Paper Award, NeurIPS 2020, FL Workshop)

https://fedml.ai

Experimental Results: Test Accuracy

Experimental Results: Non-IID

Experimental Results: Efficiency

FedGKT demands 9 to 17 times less computational power (FLOPs) on edge devices
and requires 54 to 105 times fewer parameters in the edge CNN

Experimental Results: Ablation Study

Experimental Results: Ablation Study

Experimental Results: Ablation Study

Contributions
FedGKT is the early work that explores federated deep learning and transfer
knowledge (not data and model) on edge devices.

● FedGKT is memory and computation efficient, similar to SL

● FedGKT can train in a local SGD manner like FedAvg to reduce the
communication frequency

● Exchanging hidden features as in SL, as opposed to exchanging the entire
model as in FedAvg, reduces the communication bandwidth requirement

● FedGKT is public data-free knowledge transfer method

● FedGKT naturally supports asynchronous training, which circumvents the
severe synchronization issue in SL

● Exchanging hidden features provides “some” privacy guarantees to the users

🡺 Providing strong privacy/security guarantees for FedGKT is an interesting next step
🡺 Leveraging Secure Aggregation in FedGKT?

Future Works

...

training ResNet-56 at the
server

secure?

● Extend FedGKT to Transformer Models

Future Works

● FedGKT also allows for different models to be used at each user

🡺 Providing model adaptation and personalization at each user is also another next step

Future Works

FedGKT

Long-term Goal

FedGKT is a starting point of our goal towards “Knowledgeable Communication”:
1) AI Agent (ML model) in Internet can freely exchange/transfer/share their “knowledge”
without disclosing a large amount of raw data or model;
2) ML models can be equipped with communication networking interface to exchange
neural representation with other models in a decentralized Internet.

1. Transfer Data (Centralized Training)
2. Transfer Model (Federated Learning)

3. Can we only transfer “knowledge”?

Distributed Training v.s. Federated Learning

In essence, three methodologies are useful to both:

1. Dynamic system and stochastic ML lead to
complicated interaction between these objectives.

2. Trade-off among multiple objectives including
accuracy, efficiency, security, and privacy.

3. On demand: focus on the key demand for
different use cases (ML applications), optimizing
one of the objectives but not deteriorating the
others.

PipeTransformer, ICML 2021

Group Knowledge Transfer, NeurIPS 2020

System Bottlenecks/Opportunities

❏ Resource-constrained FL (small edge models, large
server models)

❏ Scalability: 1K users → 1M users
❏ Federated neural architecture search

Foundations of Algorithm Design

❏ User selection, optimal scaling
❏ Heterogeneity, personalization, and fairness
❏ Unsupervised federated learning

Trustworthy

❏ Secure and resilient model aggregation
❏ Adversarial users (data/model poisoning)
❏ Leveraging trusted computing environments

Federated Learning

Ongoing Works 1: Self-supervised Federated Learning

Ongoing Works 1: Self-supervised Federated Learning

Elementary Result: Contrastive Loss with SimSiam Framework in FL setting (Weighted Averaging) can
archive top-1 accuracy 91% in CIFAR-10 (non-IID) using ResNet-18!

Important optimization tricks: 1) local SGD with momentum 2) cross-round learning rate scheduler

Ongoing Work 2 - Joint Adaptation to Data and System
Heterogeneity with FedNAS

Application/Model

Algorithm/Theory

System/Infrastructure

FedCV , FedNLP (preparing for EMNLP 2021) FedGraphNN (ICLR 2021
workshop, MLSys 2021 workshop)

FedGKT (NeurIPS’2020):
resource constrained FL

FedNAS, MiLeNAS (CVPR’2020):
data heterogeneity and automation

OnlinePushSum
(NeurIPS’2020 Workshop):
Single-sided Trust in
Decentralized Topology

FedML.ai (NeurIPS 2020, FL Workshop, Best Paper Award):
fundamental system, an open source library for FL research

PipeTransformer (ICML’2021):
elastic distributed training for giant models (Transformers)

Vision/Review

Advances and Open Problems in Federated Learning
FnTML (Foundation and Trend in Machine Learning), Vol3, 2021

FedML and DistML Ecosystem

