



# Towards Trustworth y Al

Ninareh Mehrabi (PhD Fellow) USC-Information Sciences Institute September 24th

## Presentation Outline



What is Trustworthy AI?



Adversarial Robustness through the Lens of Fairness

Attributing Fair Decisions



Future Plans



**Conclusion and Remarks** 



#### Trustworthy AI



Robustness. Robust against adversarial attacks on privacy, security, safety, fairness.



#### Fairness.

Staying away from any favoritism or prejudice towards different individuals or demographic groups.



#### Explainability. Understanding how AI makes decisions which can be beneficial for transparency and accountability as well.

Trustworthy Al

 $\mathbf{\nabla}$ 

**Robustness to Fairness** 

**Attributing Fair Decisions** 

Future Plans and Conclusion

PAGE 3



## Adversarial Robustness through the Lens of Fairness

AAAI-2021

Trustworthy Al

Robustness to Fairness

 $\mathbf{\nabla}$ 

Attributing Fair Decisions

Future Plans and Conclusion



#### Introduction

- Previous work in adversarial machine learning mostly considered and analyzed vulnerability of models with regards to accuracy.
- In this work, we analyze vulnerability of machine learning models with regards to fairness metrics.
- We propose two families of data poisoning attacks that target fairness.
  - Anchoring Attack
    - Goal is to skew the decision boundary by placement of poisoned instances.
    - Two types of anchoring attack:
      - Random: Target points are chosen by random.
      - Non-random: Target points chosen based on popularity (near more similar instances).
  - Influence Attack on Fairness
    - Goal is to propose a loss function maximizing which can harm fairness.





#### Data Poisoning Attacks

 Poisoning Attacks: These types of attacks happen during the training process. The goal is to train a malicious model via some poisoned data instances.



Koh, Pang Wei, Jacob Steinhardt, and Percy Liang. "Stronger data poisoning attacks break data sanitization defenses." 2018.

**Trustworthy AI** 

Robustness to Fairness

Attributing Fair Decisions

Future Plans and Conclusion

PAGE 6



### Data Poisoning Objective

• The goal of the data poisoning attack as an optimization problem:

• We have:

- The adversary who wants to maximize a targeted loss via some poisoned points.
- A set of clean and poisoned data points.

- A feasible set which the adversary wishes to put its poisoned instances there to avoid detection by sanitization techniques.
- Finally, the defender who wants to minimizes its loss.



#### Anchoring Attack

- In this attack, we need to select some target instances.
- The goal is to cloud advantaged instances with label -1 with advantaged instances with label 1 and disadvantaged instances with label 1 with disadvantaged instances with label -1.
- This will skew and bias the decision boundary as shown below.





#### Influence Attack on Fairness

- In the influence attack on fairness (IAF), we propose a loss function based on the decision boundary fairness measure\* maximizing which using the influence attack will cause harm to fairness.
- The loss is composed of two parts one for controlling the accuracy and one controlling fairness regularized by a hyper-parameter as follows:

$$L_{adv}(\hat{ heta}; \mathcal{D}_{test}) = \ell_{acc} + \lambda \ell_{fairness}$$
  
where  $\ell_{fairness} = rac{1}{N} \sum_{i=1}^{N} (z_i - \bar{z}) d_{\hat{ heta}}(x_i).$ 

$$\max_{\mathcal{D}_{p}} L_{adv}(\hat{\theta}; \mathcal{D}_{test})$$

$$s.t. \quad |\mathcal{D}_{p}| = \epsilon |\mathcal{D}_{c}|$$

$$\mathcal{D}_{p} \subseteq \mathcal{F}_{\beta}$$
where  $\hat{\theta} = \operatorname*{arg\,min}_{\theta} \mathcal{L}(\theta; \mathcal{D}_{c} \cup \mathcal{D}_{p}).$ 

\*Zafar, Muhammad Bilal, et al. "Fairness constraints: Mechanisms for fair classification." Artificial Intelligence and Statistics. PMLR, 2017.

**Trustworthy Al** 

Robustness to Fairness

Attributing Fair Decisions

Future Plans and Conclusion



### **Experimental Setup**

#### Baselines:

- Basic Influence Attack on Accuracy\*
  - This attack is merely targeting accuracy and is not optimized for fairness.
  - The goal for its inclusion is:
    - To show that attacks optimized for accuracy can not target fairness measures.
    - Good baseline to compare the performance with regards to accuracy.
- Poisoning Attack on Fairness\*\*
- Measures:
  - In addition to accuracy, we utilized two widely known fairness measures to report our results:
    - Statistical Parity Difference (SPD)
    - Equality of Opportunity Difference (EOD)
- Datasets:
  - We utilized three real world datasets in our experiments:
    - German
    - COMPAS
    - Drug Consumption

 $SPD = |p(\hat{Y} = +1|x \in \mathcal{D}_a) - p(\hat{Y} = +1|x \in \mathcal{D}_d)|$ 

 $EOD = |p(\hat{Y} = +1|x \in \mathcal{D}_a, Y = +1) - p(\hat{Y} = +1|x \in \mathcal{D}_d, Y = +1)|$ 

D<sub>a</sub>: Advantaged Demographic Group D<sub>d</sub>: Disadvantaged Demographic Group.

\*Koh, Pang Wei, Jacob Steinhardt, and Percy Liang. "Stronger data poisoning attacks break data sanitization defenses." 2018.
 \*\*Solans, David, Battista Biggio, and Carlos Castillo. "Poisoning Attacks on Algorithmic Fairness." 2020.

Robustness to Fairness

Future Plans and Conclusion



#### **Results and Findings**

- The influence attack on accuracy is not effective in affecting fairness measures, while it affects accuracy the strongest.
- The influence attack on fairness is shown to be the strongest attack that can target fairness





### Effect of $\lambda$ in IAF

- The goal of this experiment was to demonstrate the effect of λ in our influence attack on fairness loss function.
- By increasing λ in influence attack on fairness loss:
  - Harms on fairness becomes more noticeable.
  - This harm is more noticeable with more poisoned instances (i.e., larger epsilon).



### Attributing Fair Decisions with Attention Interventions





#### Introduction

- We propose an attribution framework for attention-based classification in tabular data, which is
  interpretable in the sense that it allows to quantify the effect of each attribute on the outcomes.
- We then use these attributions to study the effect of different input features on the fairness and accuracy of the models.
- Using this attribution framework, we propose a post-processing bias mitigation technique that can reduce unfairness and provide competitive accuracy vs. fairness trade-offs.
- Lastly, we show the versatility of our framework by applying it to non-tabular data such as text.

ATTENTION, PLEASE **Attributing Fair Decisions** PAGE 14 **Trustworthy AI Robustness to Fairness Future Plans and Conclusion** 



#### **Attributing Fairness with Attention**

In order to observe the effect of the k<sup>th</sup> feature:

- Get the output of the classifier using the model on the left-hand side on the figure with all the attention weights intact.
- Zero out the attention weight corresponding to the k<sup>th</sup> feature and obtain the outcome.
- Observe the outcome differences by calculating difference in the fairness metrics of the original outcome compared to the new outcome as shown on the right-hand side of the figure.
- Notice this can be done for the accuracy as well, as inspired form the work in NLP\*.



\*Serrano, Sofia, and Noah A. Smith. "Is Attention Interpretable?." *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. 2019.

Future Plans and Conclusion



#### Mitigating Bias w Attention

The post-processing bias mitigation algorithm with attention:

- Use the original attention model and obtain all the attention weights for all the k features in all the i samples.
- Then observe the effect of the k<sup>th</sup> feature on fairness by zeroing out its attention weight.
- If the feature contributes to unfairness, add it to the unfair feature set.
- For all the features in unfair feature set:
  - Use the decay-rate to decrease their weights for all the samples.
- Use new attention weights and obtain the final outcome.

Algorithm 1: Bias Mitigation with Attention Input: decay rate  $d_r$  ( $0 \le d_r < 1$ ), *n* test samples, indexed by variable *i*. Output: final predictions, unfair features. Calculate the attention weights  $\alpha_{ki}$  for  $k^{th}$  feature in sample *i* using the attention layer as in Eq. 1. unfair\_feature\_set =  $\{\}$ for each feature (index) k do if  $SPD(\hat{\mathbf{y}}_o, \mathbf{a}) - SPD(\hat{\mathbf{y}}_z^k, \mathbf{a}) \ge 0$  then unfair\_feature\_set = unfair\_feature\_set  $\cup \{k\}$ end end for each feature (index) k do if k in unfair\_feature\_set then Set  $\alpha_{ki} \leftarrow (d_r \times \alpha_{ki})$  for all n samples end end Use new attention weights to obtain the final predictions  $\hat{Y}$ . return  $\hat{Y}$ . unfair\_feature\_set

### **Experimental Setup**

#### Tabular data:

- Adult dataset:
  - Prediction task of whether individual's income exceeds 50k or not.
  - Gender as the sensitive attribute.
- Heritage Health dataset:
  - Prediction task of patient survival.
  - Age as the sensitive attribute.
- Non-Tabular (text) data:
  - Contains bios\* of people with the prediction task of whether person's occupation is nurse or dentist.

\*De-Arteaga, Maria, et al. "Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting." *FAT*. 2019.



USCViterbi 🕂 amazon



#### Results

 We show that the attention attribution framework is able to identify problematic and unfair features and reduce the bias by the proposed post-processing\_ mitigation technique by having a comparable results to the SOTA.



 $\overline{\mathbf{v}}$ 



#### Advantages

- In addition, our technique has the following advantages:
  - Able to provide explanation such that the users exactly know what feature and by how much it was manipulated to get the corresponding outcome.
  - It needs only one round of training.
  - The adjustments to attention weights are made post-training; thus, it is possible to achieve different trade-offs.
  - Our approach does not need to know sensitive attributes while training; thus, it could work with other sensitive attributes not known beforehand or during training.
  - Is scalable for large scale datasets.





#### Results on Non-Tabular Data

#### Better results compared to the pre-processing baseline as well as the original model.

| Method                 | Dentist TPRD (stdev) | Nurse TPRD (stdev) | Accuracy (stdev) |
|------------------------|----------------------|--------------------|------------------|
| Post-Processing (Ours) | 0.0202 (0.010)       | 0.0251 (0.020)     | 0.951 (0.013)    |
| Pre-Processing         | 0.0380 (0.016)       | 0.0616 (0.025)     | 0.946 (0.011)    |
| Not Debiased Model     | 0.0474 (0.025)       | 0.1905 (0.059)     | 0.958 (0.011)    |

#### Better qualitative results.

| Post-Processing (Ours)                                                                                                                                                                   | Pre-Processing                                                                                                                                                                           | Not Debiased Model                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| She practices in Apo, Armed Forces Europe and has the professional credentials of R.N The NPI Number for Rebekah Bushey is 1073935136 and she holds a License No. RN.0172354 (Colorado). | She practices in Apo, Armed Forces Europe and has the professional credentials of R.N The NPI Number for Rebekah Bushey is 1073935136 and she holds a License No. RN.0172354 (Colorado). | She practices in Apo, Armed Forces Europe and has the professional credentials of R.N The NPI Number for Rebekah Bushey is 1073935136 and she holds a License No. RN.0172354 (Colorado). |
| Post-Processing (Ours)                                                                                                                                                                   | Pre-Processing                                                                                                                                                                           | Not Debiased Model                                                                                                                                                                       |
| She has worked inpatient and outpatient from pediatrics<br>to adults. She is currently working on obtaining her<br>Doctorate of Nursing specializing in psychiatry and<br>mental health. | She has worked inpatient and outpatient from pediatrics<br>to adults. She is currently working on obtaining her<br>Doctorate of Nursing specializing in psychiatry and<br>mental health. | She has worked inpatient and outpatient from pediatrics<br>to adults. She is currently working on obtaining her<br>Doctorate of Nursing specializing in psychiatry and<br>mental health. |

Robustness to Fairness

 $\overline{\mathbf{\nabla}}$ 

## **Future** Plans

- Continue work on the intersection of fairness and adversarial machine learning with newer types of attacks and techniques.
  - Some work done in the past:
    - Poisoning Attack on Fairness (AAAI 2021).
- Continue work on the intersection of fairness and interpretability. Using explanations to combat unfairness.
  - Some work done in the past:
    - Attributing Fair Decisions (Under Review).
- Auditing different models and resources with regards to fairness.
  - Some work done in the past:
    - Commonsense Reasoning Resources (EMNLP 2021).
    - Community detection algorithms (ASONAM 2019).
    - Named Entity Recognition models (ACM HT 2020).
    - A survey on Bias and Fairness (ACM Computing Surveys 2021).



Future Plans and Conclusion



USCViterbi 🕂 amazon



## Conclusion

Covered some of my work done towards trustworthy AI in the intersection of: Adversarial ML and Fairness Data poisoning attacks on fairness Interpretability and Fairness Attributing fair decisions using attention interventions Discussed some future directions and plans

USCViterbi 🕂 amazon



### Acknowledgments



### USCViterbi 🕂 amazon

Trustworthy AI

Robustness to Fairness

Attributing Fair Decisions

 $\overline{\mathbf{v}}$ 



#### References

- 1. Mehrabi, Ninareh, et al. "Exacerbating Algorithmic Bias through Fairness Attacks." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 35. No. 10. 2021.
- 2. Mehrabi, Ninareh, et al. "Attributing Fair Decisions with Attention Interventions." *arXiv preprint arXiv:2109.03952*(2021).
- 3. Koh, Pang Wei, Jacob Steinhardt, and Percy Liang. "Stronger data poisoning attacks break data sanitization defenses." 2018.
- 4. Zafar, Muhammad Bilal, et al. "Fairness constraints: Mechanisms for fair classification." *Artificial Intelligence and Statistics*. PMLR, 2017.
- 5. Solans, David, Battista Biggio, and Carlos Castillo. "Poisoning Attacks on Algorithmic Fairness." 2020.
- 6. Serrano, Sofia, and Noah A. Smith. "Is Attention Interpretable?." *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. 2019.
- 7. De-Arteaga, Maria, et al. "Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting." *FAT*. 2019.
- 8. Mehrabi, Ninareh, et al. "A survey on bias and fairness in machine learning." ACM Computing Surveys (CSUR) 54.6 (2021): 1-35.
- 9. Mehrabi, Ninareh, et al. "Lawyers are Dishonest? Quantifying Representational Harms in Commonsense Knowledge Resources." *EMNLP* 2021.
- 10. Mehrabi, Ninareh, et al. "Debiasing community detection: The importance of lowly connected nodes." 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2019.
- 11. Mehrabi, Ninareh, et al. "Man is to person as woman is to location: Measuring gender bias in named entity recognition." *Proceedings of the 31st ACM Conference on Hypertext and Social Media*. 2020.



## Questions

PAGE 25

 $\mathbf{\nabla}$