

Toward trustworthy human-centered machine intelligence

Signal Analysis and Interpretation Lab Team:

Shrikanth (Shri) Narayanan (PI)
Tiantian Feng, Rahul Sharma, Raghuveer Peri, Amrutha Nadarajan, Rajat Hebbar

Amazon Mentors/POC:

Rahul Gupta, Anil Ramakrishna

USC-Amazon Center Kickoff Meeting, Sept/2021

Human-centered Machine Intelligence Ecosystem

Goals

- Understand the human condition: traits, state, behavior, interaction
- Support and enhance human experiences

Human centered view: characterizing data about, from and for people

- includes knowledge about how people perceive, process and use (human) data
 - o constructs capturing human expression & experience
 - constructs characterizing human "perception"
 - some constructs (e.g., "labels") may be available explicitly, others have to be (self) learned implicitly
 - other constructs may not be human "label-able"

2

Elements of Trustworthy Human-centered Machine Intelligence

S. Narayanan and A. Madni. Inclusive Human centered Machine Intelligence. *The Bridge*. 50(S): 113-116. National Academy of Engineering, 2020

A human conversation example: rich verbal and nonverbal behavior and interaction

<u>Speech and language</u> provide access to assessing **intent, emotions**, and a variety of information about personal **demographic traits** (age, gender,...), **physical/psychological/health state**, and **interaction context**.

These attributes/constructs are often intricately related.

Other biobehavioral data streams share similar "loaded" characteristics: e.g., ECG 4

"Human Aspect" Of Human Centric Machine Intelligence

- Tight links between generation and processing of signals by human system and their interaction with the world
 - the system is characterized by traits/states/behavior expression
 - o in turn the human perception/experience affects the system and shapes future behavior /actions

How about supporting interaction with/through an Al agent?

- Relies on knowledge regarding aspects of individual traits, state, behavior for providing the desired user experience
 - while lots of information is available-and possibly retrievablefrom human signals not all of it is essential or should be used

For example:

- a specific use case may rely on what was said but need not know who said it, or what their affective state was
- another use case may rely on age information and aspects of health state but doesn't need to track the specific linguistic content of an interaction

Example human-centric applications at SAIL

Large-scale workplace behavioral study

TILES study: different rooms in the hospital, different privacy constraints https://tiles-data.isi.edu/

Psychotherapy Interaction

Child-inclusive interaction

Clinically-relevant features

- Empathy
- Entrainment/Synchrony
- Visual Gaze
- Emotion-state

Sensitive features

- Gender
- Age
- **&** Ethnicity
- Language content

CARE/DEPTH: Behavioral Modeling in Human Interactions https://sail.usc.edu/care

Elements of Trustworthy Human-centered Machine Intelligence

Machine Learning & Customer Data Privacy

tps://www.actian.com/company/blog/laymans-guide-to-machine-learning-and-customer-data-privacy/

e.g., safeguard desired information to protect (PII: age, gender, race, etc.)

e.g., protect against malicious attacks Of vulnerable protected variables

SAFETY

INCLUSION

https://design.google/library/designing-global-accessibility-part-1/

e.g., enable broad access in the presence of individual heterogeneity

۶

Rest of the talk

Our initial efforts in human-centric trustworthy AI:

1. Privacy

- a. Sensitive attribute obfuscation for speech emotion recognition
- b. Federated human activity detection from wearable sensors

2. Inclusion

a. Fairness in automatic speaker verification

3. Safety

a. Exploring strategies for defense against adversarial attacks in speaker recognition

Conclusion: Summary of active/ongoing research threads and milestones

Elements of Trustworthy AI: PRIVACY

Privacy in human centric applications

Privacy is personal and context dependent

11

Privacy in human centric applications

Newer ways of sensing -e.g., wearable sensors, IoT devices- have varying privacy demands

Egocentric sensing for stress regulation

Mode of acquisition

Speech Signal

Primary Task

Foreground

Detect desired affect state

Common sensitive attributes

location, demographics, gender

Task-dependent sensitive attributes

Specific emotional states

Language content

12

Attribute inference in Speech Emotion Recognition (SER)

Sensitive emotion obfuscation in SER

[1] Malekzadeh, M., Clegg, R.G., Cavallaro, A. and Haddadi, H., 2020. Privacy and utility preserving sensor-data transformations. Pervasive and Mobile Computing, 63, p.101132.

Sensitive emotion obfuscation in SER

Feng & Narayanan, Privacy and Utility Preserving Data Transformation for Speech Emotion Recognition, ACII 2021

Gender obfuscation in SER

Tracking Individuals with Sensors (TILES) Study https://sail.usc.edu/tiles/publications.php

- A multimodal human subject study on the clinical population
 - Understand workplace stressors
 - How do they affect wellbeing and productivity
- Nurse population
 - High burnout, high stress population
 - Work long shifts
- Passive egocentric sensing using portable, lightweight sensors

Study easy to run, replicate

Fig (Clockwise): ECG shirt, TILES study app, location sensors, humidity/temperature sensor, Fitbit and TILES Audio Recorder 17

Federated human activity detection

Federated human activity detection

Federated human activity detection

- Model trained on local data at each individual edge device.
- Model updates are transferred to the global server.
- Federated models (FedAVG) perform comparable to centralized model while preserving personal information.

Training setup	f1-score
Centralized training	0.81
Federated training	0.80

Elements of Trustworthy AI: INCLUSION

Fairness and Inclusion

Artificial data-balancing or training on class-balanced data is seldom enough to ensure fairness and inclusion in learning

Fig 1: Outputs from an (withdrawn) object recognizer that labels same object differently in the context of skin tone

Fig 2: She vs he occupations output from a word embedding system

Extreme she occupations

1. homemaker 2. nurse

3. receptionist

4. librarian

5. socialite

6. hairdresser

7. nanny

8. bookkeeper

9. stylist

10. housekeeper

11. interior designer

12. guidance counselor

Extreme he occupations

1. maestro

2. skipper

3. protege

4. philosopher

5. captain

6. architect

7. financier

8. warrior

9. broadcaster

10. magician

11. figher pilot

12. boss

https://arxiv.org/abs/1607.06520

Towards inclusive speech-centric interaction technologies

Speaker Verification

Applications

Access control

Audio indexing

Transaction authentication

Genuine: Test speaker same as claimed

Impostor: Test speaker different from claimed

- ☐ Similarity scores between enrolment and test utterance embeddings
- ☐ State-of-the-art speaker embeddings: x-vectors
- ☐ Models trained using gender-balanced data
- Evident skew in scores between male and female populations

Data balancing alone does not ensure fairness in ASV

Improving fairness using Adversarial Training

- Required attribute: Speaker id
- ☐ Sensitive attribute: Gender

Goal

Learn speaker discriminative representations while discarding gender information

Qualitative results

Quantitative results (lower is better)

% EER	Male	Female	Delta	Overall
x-vector	6.50	4.80	1.70	5.82
AT	6.60	5.37	1.23	6.05

- ☐ Adversarial training mitigates skew in similarity scores
- ☐ Difference (delta) in EER between Male and Female populations reduced with Adversarial training

Future research directions

- Intersectionality: Age, Gender, Accent etc.
- ☐ Holistic evaluation metrics

Adversarial training succeeds in reducing gender bias in ASV

Elements of Trustworthy AI: SAFETY

Security risks in Machine Learning Systems

Training stage

Data poisoning

- Manipulate training data to learn incorrect correspondences
- Can compromise privacy and confidentiality

Inference stage

Adversarial attack

- ☐ Add malicious noise to input
- ☐ Force pre-trained system to make incorrect predictions
- Difficult to detect

Output attack

- Attacks result display setup
- ☐ Manipulate output prediction presentations

28

Security of Speaker Recognition systems

Adversarial attacks

- Malicious attacker crafts noise to modify DNN system predictions
- Added noise can be imperceptible
- Attacker can force classifier to output any desired incorrect prediction
- Compromise security of any DNN-based system
- Impacts trustworthiness

DNN-based systems (including speaker recognition) are vulnerable to adversarial attacks

Jati, A., Hsu, C. C., Pal, M., Peri, R., AbdAlmageed, W., & Narayanan, S. (2021). Adversarial attack and defense strategies for deep speaker recognition systems. *Computer Speech & Language*, *68*, 101199.

Security of Speaker Recognition systems

FGSM attack

Uses sign of gradient to push prediction away from true output

Defense against adversarial attacks[^]

- Use adversarially added noise during speaker recognition model training
- On-the-fly data augmentation

Speaker recognition performance

% accuracy	Benign	FGSM* attack
Without defense	94.0	25.0
With defense	92.0	73.0

FGSM: Fast Gradient Sign Method

Defense significantly improves performance under attack Minimal impact on benign performance

*Goodfellow, I.J., Shlens, J. and Szegedy, C., 2014. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*.
^Jati, A., Hsu, C.C., Pal, M., Peri, R., AbdAlmageed, W. and Narayanan, S., 2021. Adversarial attack and defense strategies for deep speaker recognition systems. *Computer Speech & Language*, 68, p.101199.

Summary/Milestones: Toward trustworthy humancentered machine intelligence

31

Project Title	Description	Research Area	Milestones
Emotion Recognition	Privacy and utility preserving data transformation for Speech Emotion Reco.	Privacy preserving representation learning	 Learn data transformations for speech to hide sensitive emotions Suppress demographic info. (e.g, gender)
	Using intrinsic relationships between label/annotation noise to improve emotion recognition	Federated learning, learning with noisy labels	 Incorporating annotator reliability/label noise into federated learning setup Having a central model that is generalizable enough for different datasets
Egocentric wearable health attribute modelling	Modelling health attributes from in-situ egocentric wearable audio	Wearable sensing, Egocentric audio, Behavior modelling	Learning centralised audio representations through self-supervised learning Leveraging the representations to model clinically relevant attributes in privacy preserving fashion

Collaborators:

Anil Ramakrishna, Rahul Gupta

amazon

Trustworthy Al Alexa NU group

Summary/ Milestones

Project Title	Description	Research Area	Milestones
Federated human activity recognition	Understanding human activity using physiological signals, in trustworthy fashion.	Personalisation,	Extended federated learning to bio-behavioural signals Showed effectiveness of personalisation in label sparse regimes
Fairness in speaker verification	Understand issues of biases and fairness in ASV systems at different stages of the pipeline.	Inclusion, Fairness	Used adversarial training methods to improve fairness Incorporate intersectional fairness by jointly modelling multiple demographic attributes
Defense against adversarial attacks on speech technology systems	Improve reliability of speech technologies such as ASR and Speaker recognition by defending against adversarial threats	Security, Robustness against adversarial attacks	Developed defenses against black-box and white-box adversarial attacks using preprocessors Improve defense performance by incorporating adversarial training techniques

Collaborators:

Anil Ramakrishna, Rahul Gupta

amazon

Trustworthy Al Alexa NU group

Elements of Trustworthy Human-centered Machine Intelligence

malicious attacks

Strive for an integrative approach across the machine intelligence ecosystem

33