Mahsa Torfeh

torfeh@usc.edu	413-362-6629
Education	
Ph.D. (Continued) in Electrical Eng Optics and Photonics University of Southern California (USC)	Aug 2021 - Present
M.Sc. and Ph.D. in Electrical Eng Optics and Photonics (Continued at USC) University of Massachusetts Amherst	Sep 2017 - Aug 2021
B.Sc. in Electrical Eng Communication Engineering University of Tehran	Sep 2012 - May 2017
Working Experiences	
 Meta (Facebook) - Research Intern Prospective intern 	Dec 2023 - Feb 2024
 Samsung Semiconductor Inc. – MetaVisionLab (MVL) - Research Intern Inverse design and optimization of cascaded optical nano-structures Development of theoretical basis for polarization control using metasurfaces Providing three disclosures 	Jun - Aug 2023
 Samsung Semiconductor Inc. – MetaVisionLab (MVL) - Research Intern Inverse design of optical metagratings Development of a new optimization method for optimally efficient optical metas Providing two disclosures based on the developed designs and methods 	<i>May - Aug 2022</i> urfaces
Awards and Honors	
SPIE Optics and Photonics Education Scholarship	2022
Finalist at Meta PhD Fellowship	2022
USC Ph.D. Fellowship Award	2021
National Science Foundation (NSF): iREDEFINE Professional Development Award	2019
First Place Poster Award (University of Massachusetts Amherst)	2019

• First Place Three-Minute (3MT) Presentation Award (University of Massachusetts Amherst) 2019

Patents

- Siddique, R. H., Torfeh, M., Fung, R., Wang, M., (Submitted from Samsung Semiconductor Inc.), (2022).
- Hsu, W., Torfeh, M., Li, S., "Integrating Lenses and Spaces for an Ultra-Compact Metasurface Imaging System", US provisional patent application 63/243,914, (2021).

Publications

- Torfeh, M. and Arbabi, A., "Modeling metasurfaces using discrete-space impulse response technique". ACS Photonics, 2020.
- Einck, V., Torfeh, M., McClung, A., Jung, D. E., Mansouree, M., Arbabi, A. and Watkins, J.J., "Scalable Nanoimprint Lithography Process for Manufacturing Visible Metasurfaces Composed of High Aspect Ratio TiO2 Meta-atoms". ACS Photonics, 2021 (Accepted).

- McClung, A., Samudrala, S., **Torfeh, M.**, Mansouree, M. and Arbabi, A., **"Snapshot spectral imaging with parallel metasystems"**. Science Advances, 2020.
- Park, J., Hu, X., Torfeh, M., Okoroanyanwu, U., Arbabi, A. and Watkins, J.J., "Exceptional Electromagnetic Shielding Efficiency of Silver Coated Carbon Fiber Fabrics via Roll-to-Roll Spray Coating Process". Journal of Materials Chemistry C., 2020.
- Park, J., Hu, X., Torfeh, M., Okoroanyanwu, U., Arbabi, A. and Watkins, J.J., "Exceptional Electromagnetic Shielding Efficiency of Silver Coated Carbon Fiber Fabrics via Roll-to-Roll Spray Coating Process". Journal of Materials Chemistry C., 2020.
- Zou, K. et al., "High-capacity free-space optical communicatins using wavelength and modedivision-multiplexing in the mid-infrared region". Nature Communications, 2022.
- Zou, K., et al., "Demonstration of free-space 300-Gbit/s QPSK communications using both wavelength- and mode-division-multiplexing in the mid-IR", Optical Fiber Communication Conference, 2022.

Conferences

- Torfeh, M., McClung, A.C. and Arbabi, A., "System-level models for metasurfaces" (Conference Presentation). In Photonic and Phononic Properties of Engineered Nanostructures X. International Society for Optics and Photonics. 2020.
- Torfeh, M. and Arbabi, A., "Analysis and design of metasurfaces using the discrete-space impulse response technique" (Conference Presentation). In High Contrast Metastructures VIII. International Society for Optics and Photonics. 2019.
- McClung, A., Torfeh, M., Einck, V., Watkins, J. J., Arbabi, A., "Nanoimprint process for scalable manufacture of silicon nitride metalenses." Conference Presentation). In High Contrast Metastructures IX. International Society for Optics and Photonics. 2022.
- McClung, A., Torfeh, M., Mirzapourbeinekalaye, B., Mansouree, M., Samudrala, S. and Arbabi, A., "Cascaded metasurface optics" (Conference Presentation). In High Contrast Metastructures IX. International Society for Optics and Photonics. 2020.
- Einck, V., et al. "Rapid direct nanoimprint lithography manufacturing of visible wavelength metalenses composed of high aspect ratio TiO2 nanoposts" (Conference Presentation). In High Contrast Metastructures IX. International Society for Optics and Photonics. 2022.
- Einck, V., Watkins, J. J., Arbabi, A., McClung, A., Torfeh, M., Mansouree, M., "A scalable nanoimprint lithography process to manufacture diffractive optics and metalenses with high aspect ratio nanofeatures using high refractive index nanocrystals". International Society for Optics and Photonics, 2021.
- Zou, K., et al. "Demonstration of Free-Space 300-Gbit/s QPSK Communications Using Both Wavelengthand Mode-Division-Multiplexing in the Mid-IR." 2021 Optical Fiber Communications Conference and Exhibition (OFC). IEEE, 2021.

Research Experiences

Photonics Laboratory, University of Southern California

2021-Present

Developing a novel deep neural network system to optimally design multilayer metasurfaces

- Providing a novel neural network for inverse design of metasurfaces (Python, TensorFlow)
- Development of Mixture Density Network (MDN) as a new platform to solve the non-uniqueness issue in current machine learning inverse design methods

• Extending the modeling technique to optimally deign volumetric holography metasurfaces with high FoV and efficiencies applicable for AR devices.

Accurate modeling of angular responses of 3D metasurfaces and their integration

• Extending the developed modeling technique provided at USC group to accurately model arbitrary 3D optical metasurfaces with remarkable low computational costs using machine learning methods. (Python, TensorFlow)

Photonics Laboratory, University of Massachusetts Amherst

Accurate modeling of angular responses of general metasurfaces

- Introducing a novel method for modeling general metasurfaces by planewave expansion of incident light reducing the modeling error by ~3x. (Linking MATLAB to S4 codes and COMSOL simulations)
- Modeling multi-layer metasystems using the proposed method
- Providing a new enhanced model using circuit models equivalent of the meta-atoms (MATLAB and S4 codes)

Design and implementation of a diffraction phase microscopy (DPM)

- Design and implementation of DPM for phase acquisition
- Preforming measurements and characterizations of 2D metalenses to provide accurate evaluations of the deformations in the fabrication.

Free space optics and integrated photonics measurement

- Implementation of measurement setups for free space optics and integrated photonics devices
- Measurement and characterization of various integrated photonic structures (Optical ring resonators and waveguide lenses)
- Measurement and characterization of 2D optical metalenses (Characterization of metalenses fabricated with nano-imprint lithography (NIL) to optimize the NIL process)

Development, fabrication, and characterization of optical planar absorber

- Surface morphology and absorbing material optimization to enhance the absorbance
- Optimization of the development and etch process of SU8 to provide high absorbance
- Exploring absorption coefficient and film quality of different metals deposited on etched SU8 (AJA sputtering system and CHA-SE 600 E-beam Evaporator

Development of PECVD deposition recipe

 Development of various PECVD deposition recipes for deposition of aSi, Si3N4 and SiNO3 (STS Vision 310 PECVD)

Microwave material characterization of polymer composites

- Implementation of characterization setup with rectangular waveguides at C, X and Ku band (PNA)
- Design and implementation of a broadband characterization setup using coaxial cables (PNA)

Modeling polymer composites for high electromagnetic shielding effectiveness

- Homogenization models for periodic polymer composites (HFSS, COMSOL and MATLAB)
- Providing framework for fabrication of composites to deliver high electromagnetic shielding effectiveness.

Photonics Laboratory, University of Tehran

Wideband energy harvesting rectenna at microwave frequencies

- Homogenization models for periodic polymer composites (HFSS, COMSOL and MATLAB)
- Design and implementation of wideband rectanna for energy harvesting systems at microwave frequencies (HFSS and Keysight ADS)

Integrated Circuits Laboratory, University of Tehran

Remote heartbeat sensing system

• Design and implementation of wireless sensor network using nRF24L01+ (LabView)

2016-2017

2017-2021

Computer Skills

Programing: Python, TensorFlow, Keras, MATLAB ,C++/ C Optical design software: Lumerical, Zemax, OSLO, S4(RCWA) Numerical methods: Beam-propagation method, AI-algorithms, Transmission line-method, plane wave expansion, non-local EM behaviors Engineering software: LabView, AutoCAD Circuit simulations: Keysight ADS, SPICE Electromagnetic simulators: COMSOL, HFSS, CST

Technical Skills

Optical design and on-chip measurements: Free-space optics imaging and spectroscopy, Holographic imaging for meta-optic defect detection, Integrated Whispering Gallery Mode (WGM) characterization, Light absorber Characterization for Imaging application.

Nano fabrication: PECVD, E-beam Evaporation, Sputtering, RIE, E-beam lithography
 Characterization: SEM, Ellipsometer, Profilometry, Haze measurements
 Backend processing: Wire bonding, Dicing saw, Microwave characterization of absorber materials

Teaching Experiences

University of Tehran

2015-2017

Antenna theory, Microwaves, Computer Networks
 Responsible for designing and grading homework assignments and course projects.
 Responsible for discussion classes.

Volunteering activities

Board member at Society of SPIE/Optica Students Chapter at USC

Professional Society Membership

OSA, SPIE, Optica