Mostafa Abouelkassem

Viterbi School of Engineering, University Park Campus, PHE 428, Los Angeles, CA 90089 (669) 264-8128 • abouelka@usc.edu

EDUCATION

 The University of Southern California, Viterbi School of Engineering, Los Angeles, CA Ph.D., Electrical Engineering, M.Sc., Electrical Engineering, GPA 4/4 Counsequerly, PE Systems and Hardware (EE567). Apolog Mixed Integrated Circuits I (EE526A). 	Aug. 2017 – Present May 2022
Analog-Mixed Integrated Circuits II (EE536B), Communications Integrated Circuits (EE632A), VLSI S (EE577A), Quantum Mechanics (EE539), Solid State Processing and Integrated Circuits Laboratory (E	l System Design (EE504)
 Ain Shams University, Faculty of Engineering, Cairo, Egypt M.Sc. with thesis, Electrical Engineering, GPA 3.54/4 <i>Coursework:</i> Analog IC Design, Digital IC Design, RFIC Design, Power Management IC Design, and I <i>M.Sc. thesis:</i> "A Low-power High-speed ADC-based Equalizer for Serial Links." (Best 2017 M.Sc. The 	Oct. 2013 – May 2017 High-Speed Serial Links. esis Finalist)
 Alexandria University, Faculty of Engineering, Alexandria, Egypt B.Sc., Electrical Engineering, Electronics Major, 93.44% equivalent to GPA 3.96/4 Distinction with degree of honor (5 years distinction), Valedictorian of a 335-student class. 	Sept. 2008 – July 2013
WORK EXPERIENCE	
The University of Southern California, Viterbi School of Engineering, Los Angeles, CA	
Ph.D. Candidate and Graduate Research Assistant	Aug. 2017 – Present
 Served as a Research Scholar at Semiconductor Research Corporation (SRC) 	Jan. 2023
• Served as a Teaching Assistant for EE 632A w/ prof. Hossein Hashemi	Spring 2023
 Worked on DARPA MIDAS projects. Served as a Tasching Assistant for EE 526A w/mmaf Hassain Hashami 	Jan. 2019 – Dec. 2022
• Served as a reaching Assistant for EE 550A w/ prof. Hosseni Hashenii Oualcomm Inc Irvine CA	Fall 2019
RF/Analog-Mixed IC Design Engineer Intern	May 2023 – Aug. 2023
Working on ultra-low-noise LDO for noise-sensitive wireless receiver blocks.	
Qualcomm Inc., Irvine, CA	May 2022 Aug 2022
Worked on Debugging, Verifying RF systems.	May 2022 – Aug. 2022
 Worked on a design for an innovative wireless receiver front-end. 	
• Scored 7/7 in career readiness report	
Skyworks Inc., Newbury Park, CA	L. 2019 A. 2019
Worked in Advanced Mobile Solutions Division.	June 2018 – Aug. 2018
Worked on PA Digital Controller and Bias Circuits.	
Silicon Vision (Si-Vi), Synopsys Inc., Cairo, Egypt	
Analog-Mixed IC Design Engineer	Dec. 2015 – July 2017
• Designed discrete-time and continuous-time comparators, and up-down counter.	
• Worked on Analog verification of IO pads, loop-filter, VCO, feedback divider and calibration divider.	
Integrated Circuits Lab (ICL), Ain Shams University, Cairo, Egypt	Sept 2013 Nov 2015
Worked on a low-power high-speed serial link ADC-based receiver.	Sept. 2015 – Nov. 2015
• Responsible for the design of an ultra-low-power ADC and a front end CTLE equalizer.	
Alexandria University, Faculty of Engineering, Alexandria, Egypt	
Assistant Lecturer/Teaching Assistant	Sept. 2013 – July 2017
• Taught full lectures and labs in Circuits Analysis, Logic-Design, Electronics I and II, Analog IC Design, Solid-State Physics, Solid-State Devices, 8086/8088 Microprocessor basics Land II.	
CONSULTIX Systems. Cairo. Egypt	
RF Board Level Design Engineer Intern	Jan. 2014 – Feb. 2014
Worked on Rectenna RF-DC Conversion.	

• Gained basic experience in ADS software.

<u>Si-Ware Systems (SWS)</u>, Cairo, Egypt

Application Engineer Intern, ASIC solutions division

- Worked on testing SWS chips.
- Gained basic experience in LabVIEW software.

PUBLICATIONS & PREPRINTS

Ongoing:

- <u>Mostafa Ayesh</u>, Ce Yang, Soumya Mahapatra and Mike S. W. Chen, "A 20-GHz Non-Uniform Sub-Sampling mm-Wave Receiver with a Non-Uniform Discrete-Time FIR Filter Achieving >39dB Blocker Rejection" to be submitted to 2024 ISSCC.
 Mostafa Ayesh, Co Yang, Soumya Mahapatra and Mike S. W. Chen, "A 20 GHz Non Uniform Sub Sampling mm Wave
- <u>Mostafa Ayesh</u>, Ce Yang, Soumya Mahapatra and Mike S. W. Chen, "A 20-GHz Non-Uniform Sub-Sampling mm-Wave Receiver with a Non-Uniform Discrete-Time FIR Filter Achieving >39dB Blocker Rejection" to be submitted to JSSC.
- 3. Ce Yang, <u>Mostafa Ayesh</u>, Aoyang Zhang and Mike S. W. Chen, "A mm-Wave 24-28 GHz Non-Uniform Sub-Sampling Technique Enabling Spectral Alias Spreading" to be submitted to JSSC.

Published:

- Aoyang Zhang, <u>Mostafa Ayesh</u>, Soumya Mahapatra and Mike S. W. Chen, "A 24-28 GHz Concurrent Harmonic and Subharmonic Tuning Class E/F2,2/3 Subharmonic Switching Power Amplifier Achieving Peak/PBO Efficiency Enhancement," CICC 2021.
- 5. Aoyang Zhang, Ce Yang, <u>Mostafa Ayesh</u> and Mike S. W. Chen, "A 5-to-6GHz Current-Mode Subharmonic Switching Digital Power Amplifier for Enhancing Power Back-Off Efficiency," ISSCC 2021.
- 6. Ce Yang, <u>Mostafa Ayesh</u>, Aoyang Zhang and Mike S. W. Chen, "A 29-mW 26.88-GHz Non-Uniform Sub-Sampling Receiver Front-End Enabling Spectral Alias Spreading," RFIC 2020.
- 7. <u>M. M. Ayesh</u>, S. Ibrahim and M. M. Aboudina, "*Design and Analysis of an Ultra-Low-Power Charge-Steering Based StrongARM Comparator*," ICM, December 2016.
- 8. <u>M. M. Ayesh</u>, "A Low-power High-speed Charge-steering ADC-based Equalizer for Serial Links," ICECS, M.Sc/Ph.D. Forum, December 2015.
- 9. <u>M. M. Ayesh</u>, S. Ibrahim and M. M. Aboudina, "15.5-mW 20-GSps 4-Bit Charge-Steering Flash ADC," MWSCAS, pp.33-36, August 2015.

Preprints:

10. <u>Mostafa M. Ayesh</u>, Sameh Ibrahim and Mohamed M. Aboudina, "*A Low-Power 20-Gb/s Discrete-Time Analog Front-End for ADC-Based Serial Link Equalizers*," preprint arXiv:1902.00233, Jan. 2019.

AWARDS

- Recipient of CICC 2019 Student Travel Grant Award (2019)
- Recipient of Annenberg Fellowship, USC Viterbi School of Engineering (2017-Present)
- Recipient of a full scholarship throughout M.Sc. studies. (2013-2016)
- Third place in M.Sc. Forum of the 2015 IEEE International Conference on Electronics, Circuits, and Systems for: "A Low-Power High-Speed Charge-Steering ADC-Based Equalizer for Serial Links".
- Recipient of Alexandria University annual academic distinction award. (2009-2013)

CURRICULUM PROJECTS

<u>Major Design Projects:</u>	
"A 30-GHz mm-Wave Mixer-First Receiver with Non-Uniform TAF Featuring VCO-Based Integrator"	April 2023 – May 2023
• Taped-Out in TSMC 28nm technology.	
• Custom designed and verified the digital samplers, CCO-encoders and level shifters.	Jan. 2023 – June 2023
• Taped-Out in TSMC 65nm technology.	
• Designed and verified the on-chip 25-GHz phase interpolators, buffers and subharmonic clock analog N	MUX.
"A Time-Interleaved Two-Step Time-Domain ADC"	Mar. 2022 – May 2022
• Taped-Out and Silicon-Tested in GF 14nm FinFET technology.	
• Investigated the input buffer and helped in SPI layout.	
• Designed and verified the input route and input distribution.	
"A 20-GHz mm-Wave Receiver with a Non-Uniform Discrete-Time FIR Filter"	Dec. 2020 – Jan. 2023
• Taped-Out and Silicon-Tested in TSMC 28nm technology.	
• Designed and verified the entire chip including the signal chain and the on-chip clocking system.	
 Fully automated the testing process to capture all the required measurements. 	
"A 26-GHz Sub-Harmonic-Switching (SHS) Digital PA"	April 2020 – June 2020
• Taped-Out and Silicon-Tested in TSMC 65nm technology.	
• Verified AM and PM input buffers and helped in the chip layout.	

• Designed and verified some digital control circuits.

"A 6-GHz Sub-Harmonic-Switching (SHS) Digital Power-Amplifier (PA)"	May 2019 – Sept. 2019
• Taped-Out and Silicon-Tested in TSMC 65nm technology.	
• Verified AM and PM input buffers and helped in the chip layout.	
 Designed and verified EM structures in Cadence Virtuoso and HFSS. 	
"A 26.88-GHz Non-Uniform Sub-Sampling RX for mm-Wave Applications"	Feb. 2019 – Nov. 2019
Taped-Out and Silicon-Tested in TSMC 28nm technology.	
• Designed the signal-chain including mm-Wave input buffers, sub-sampling master-slave sampling netwo	rk and output buffers.
Helped in chip-measurements	
"An 8-bit Ultra-Low-Power SAR ADC for Bio-signals Applications"	Oct. 2017 – Feb. 2019
• Taped-Out and Silicon-Tested in TSMC 65nm technology.	
• Built the ADC-PCB Test Board and carried out the measurements.	
"Designing a General-Purpose Microprocessor and Modeling an ASIC Accelerator for BNN"	Oct. 2018 – Nov. 2018
Built 4-Stage 16-bit Pipeline Microprocessor.	
• Modeled the whole CPU in Python and tested Schematics and Layout for Functionality.	
• Modeled BNN in Python and used the designed CPU with modifications for BNN Processing Acceleration	n.
"A 75 dP 100 MHz Signal Pandwidth Continuous Time Dalta Signa ADC"	Mar 2019 April 2019
 A / J-ab 100-MH2 Signal-Danawiain Continuous Time Delta-Sigma ADC Duilt system level simulations using both Varilag. A and MATLAP for CIEF and CIEP architectures 	Mar. 2018 – April 2018
 Built System-level simulations using both verified A and WATLAB for CITT and CITB architectures. Duilt 1 Shit Quantizer and 1 Shit Feedback DAC 	
• Built 1.501 Qualitzer and 1.501 Feedback DAC.	
"A Low-Power 12-Gbps Multi-Standard SERDES Transceiver" (Funded by ITIDA)	Sept. 2013 – Nov. 2015
 Designed an ultra-low-power ADC and a Discrete-Time Linear Equalizer (DTLE). 	
 Modeled a Digital DFE and an adaptive CTLE 	
• Finished post-layout simulations for 20-Gbps 15.5-mW ADC in UMC65 and built the chip I/O Pad ring	
"High-Speed Serial Link Transceiver for 10Gbase-KR Standard Using a 65-nm CMOS Process"	Sept. 2012 – June 2013
 Modeled a time-interleaved Flash ADC using MATLAB Simulink 	
• Designed a 4-bit 10GS/s time-interleaved Flash ADC. Thermometer to binary digital encoder, and 1:16 I	Demultiplexer.
 Designed the digital RX system level. 	
Mini Dagian Dugiasta (Class Dugiasta).	
Mini Design Projects (Class Projects): "512 Bit SPAM Arabitecture Design"	Sant 2018
<u>Mini Design Projects (Class Projects):</u> "512-Bit SRAM Architecture Design" Puild 4 healts of SPAM, Pour Decoder, Column Decoder, Sonso Amalifier	Sept. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout REX and not loyout simulations 	Sept. 2018
 <u>Mini Design Projects (Class Projects):</u> "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations 	Sept. 2018
 <u>Mini Design Projects (Class Projects):</u> "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" 	Sept. 2018 April 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. 	Sept. 2018 April 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. 	Sept. 2018 April 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" 	Sept. 2018 April 2018 April 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. 	Sept. 2018 April 2018 April 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" 	Sept. 2018 April 2018 April 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. 	Sept. 2018 April 2018 April 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. 	Sept. 2018 April 2018 April 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed for low-gain and high-gain settings. 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed for low-gain and high-gain settings. "A Rail-to-Rail Input / Output Current-Recycling Folded Cascode OTA in 45nm Process" 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed for low-gain and high-gain settings. "A Rail-to-Rail Input / Output Current-Recycling Folded Cascode OTA in 45nm Process" Designed a two-stage OTA with a rail-to-rail input and output. 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9V pp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed for low-gain and high-gain settings. "A Rail-to-Rail Input / Output Current-Recycling Folded Cascode OTA in 45nm Process" Designed a two-stage OTA with a rail-to-rail input and output. 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed a two-stage OTA with a rail-to-rail input and output. Used miller and feedforward compensation. Achieved gain of 50dB, GBW of 1.4GHz, 60.2° P. M., ICMR 0.1 - 0.9V while consuming 6mW 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed a two-stage OTA with a rail-to-rail input and output. Used miller and feedforward compensation. Achieved gain of 50dB, GBW of 1.4GHz, 60.2° P. M., ICMR 0.1 - 0.9V while consuming 6mW 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017 April 2015 – June 2015
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed a Gm-boosted LNA using feedforward cancellation technique. Designed a two-stage OTA with a rail-to-rail input and output. Used miller and feedforward compensation. Achieved gain of 50dB, GBW of 1.4GHz, 60.2° P. M., ICMR 0.1 - 0.9V while consuming 6mW "A Design of eDRAM System Architecture" 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017 April 2015 – June 2015
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9Vpp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a Gm-boosted LNA using feedforward cancellation technique. Designed a two-stage OTA with a rail-to-rail input and output. Used miller and feedforward compensation. Achieved and for Bod Store of Sto	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017 April 2015 – June 2015
 Mini Design Projects (Class Projects): "512-Bit SRAM Architecture Design" Build 4 banks of SRAM, Row Decoder, Column Decoder, Sense Amplifier All schematics to Layout, PEX and post-layout simulations "A Differential 3.5-GHz Voltage Controlled Oscillator" Designed an LC-tank based Oscillator with 20% tuning range. Used digital bits and a varactor to tune the oscillation frequency. "A Differential Switched-Capacitor Residue Amplifier for 12-bit 100 MS/s ADC" Analyze the different non-idealities in the SC amplifier and their effects. "Zero/Low IF Wireless Receiver Frontend: LNA + Harmonic-Reject Quadrature Mixer" Designed an HRM using multi-phases clock. Achieved HR3 of 40.5dB, HR5 of 54.3dB and power of 9mA for the LNA and the Mixer. "12-bit 200-MS/s 5-GHz Bandwidth Track and Hold Circuit" Built a driver for the sampling circuit Used a bootstrapped switch to get low distortion as possible Achieved 0.9V pp input, SNDR of 75dB and SFDR of 95.2dB "An Inductor-less Wideband Low Noise Amplifier" Designed a two-stage OTA with a rail-to-rail input and output. Used miller and feedforward compensation. Achieved agin of 50dB, GBW of 1.4GHz, 60.2° P. M., ICMR 0.1 - 0.9V while consuming 6mW "A Design of eDRAM System Architecture" Designed 4 Tand 3T1D eDRAM cells, Sense Amplifier, Column Tree Decoder, and NOR Row Decoder. Used Fin-FET Verilog-A model from EECS Berkeley open library. 	Sept. 2018 April 2018 April 2018 Mar. 2018 Mar. 2018 Feb. 2018 Nov. 2017 April 2015 – June 2015

"A Design of SC Buck DC-DC Step-Down Converter"	July 2014 – Aug. 2014
 Designed Multi-ratio (1, 3/4, 2/3, 4/5) adaptive SC DC-DC converter to down convert 2.5V nominal line 38mV output ripples for 200mV input ripples, 30mΩ ESR and accuracy of 20mV 	to 1.8V
 <i>"A Design of Wideband Low-Noise Amplifier (LNA)"</i> Designed a highly linear LNA with 18.25dB gain, 1dB NF, 2.2dBm IIP3. The total power consumption is 4.3mA. The LNA is operating from 200MHz to 2.45GHz 	April 2014 – May 2014
 <i>"Designing a Spiral, Coplanar and Microstrip Inductors Using Sonnet"</i> Designed different types of integrated inductors with different quality factors. Gained experience in Sonnet software. 	April 2014 – May 2014
<i>"A Model of a Simple System Level for Bluetooth System Using Simulink"</i>Modeled a simple and abstractive Bluetooth system using ADC and Phase domain ADC in MATLAB.	Feb. 2014 – Mar. 2014
 <i>"Design and Characterization of a CMOS 8-bit Microprocessor Data Path"</i> Designed the behavioral model of an 8-bit microprocessor using Verilog. Designed the barrel shifter, latches and flip-flops & their layout using L-Edit. 	Mar. 2013 – June 2013
 <i>"System Level Design of a Pipeline ADC"</i> Modeled a 1.5bit M-DAC based Pipeline ADC using MATLAB Simulink. Investigated building open-loop and closed-loop amplifier in each pipeline sub-stage. 	Sept. 2012
 <i>"Behavioral Modeling for Serial Data Receiver Using VHDL"</i> Designed a behavioral serial data RX that receives data chunks of 10 bits from a serial data bus. RX was modeled Using Xilinix, Modelsim and written in VHDL. 	April 2011 – May 2011

TECHNICAL SKILLS

- Simulation Tools: Cadence Virtuoso, MATLAB and Simulink, <u>ADS</u>, Synopsys analog flow, <u>Sonnet</u>, <u>LabVIEW</u>, Xilinx ISE, Quartus, Modelsim, PCB skills, Multisim, and Mentor Graphics (ELDO), HSPICE,
- Layout: Calibre (DRC, LVS, PEX), and L-Edit
- Programming: Verilog-AMS, VHDL, <u>Shell Scripting</u>, <u>Python</u>, <u>SKILL</u>, C, and Assembly (for x86 series and MCS-51 family)
- Lab instruments: <u>LPFKS62</u>, Network Analyzer, NI-DAQ, Temperature Chamber,
- Oscilloscope, Multimeter, <u>logic analyzer</u>, and Function generator
 Editing: LATEX, Inkscape, and MS-Visio
- Underlined terms refer to a beginner-level experience

Extra Academics

- <u>First in Class</u> in RF Systems and Hardware EE567, Analog-Mixed Integrated Circuits I EE536A, Analog-Mixed Integrated Circuits II EE536B, Communications Integrated Circuits EE632, VLSI System Design EE577A and Solid-State Processing and Integrated Circuits Laboratory EE504
- 2. Audit: USC CS570: Algorithm Design in Summer 2019
- 3. Audit: USC EE483: Introduction to Digital Signal Processing in Fall 2019
- 4. Audit: USC EE552: Asynchronous VLSI Design in Spring 2020
- 5. Audit: USC EE505: Analog, Mixe, RF IC Tape-out in Summer 2020

TECHNICAL SERVICES

- Technical Reviewer for CICC (2019-2023), ISSCC (2019-2023), VLSI (2019-2023), ISCAS 2017, MWSCAS (2017-2023), and Springer-Ain Shams Journal.
- Technical Reviewer for IEEE Egypt section in 2015 EED (Egyptian Engineering Day).

EXTRACURRICULAR ACTIVITIES

IEEE CICC 2019 Volunteer	April 2019
VLSI-Egypt – Alexandria Section NGO, Alexandria, Egypt.	Nov. 2013 – Dec. 2016
Founder and Chairman	
EgyptScholars – Alexandria Student Branch NGO, Alexandria, Egypt	Sept. 2013 – Mar. 2015
Founder and Chairman	
IEEE – Alexandria Student Branch – SSCS, Alexandria, Egypt	Sept. 2013 – Mar. 2015
Instructor for Basic Electronics & Analog Design courses	
EWEB NGO, Alexandria, Egypt	Sept. 2013 – Dec. 2014
Instructor for Basic Electronics & Analog Design courses	-