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1 Laboratory Objective

Up to this point we have been considering primarily the characteristics of transmission
lines in the frequency domain; pretty much all our measurements and analysis have al-
ways been performed using time-harmonic signals at specific frequencies. Even though
we have been using incident and reflected waves to learn and handle scattering param-
eters, the time that these waves take to propagate along transmission lines so far was
not extensively used to our advantage.

In this laboratory we will consider explicitly the time waves take to propagate along
transmission lines, and will use it to perform accurate measurements. We will also use
our frequency-domain measurements to synthesize pulses, propagate them in transmis-
sion lines, and make measurements. To be successful you will need to have studied in
detail the material covered in Sec. 9-5 of our textbook1.

As a result of this laboratory you will need to generate and submit a laboratory
report for grading. The report should have each of its sections and subsections num-
bered according to this laboratory manual, and be a detailed document with all your
design efforts, calculations, associated Smith Charts, measurement results, conclusions,
drawings, plots, relevant photos of all constructed components (to showcase your very
important high-frequency craftsmanship), and printouts of any developed software.

Note that, to maximize the learning experience, the laboratory has been designed to
be carried out individually, hence each person in the class received their own individual
lab kits. Consequently, the experiment and the corresponding report has to be done
completely individually.

2 Moving the Position of the VNA Calibration

Planes and Some of its Applications

As previously discussed, when a VNA is calibrated in principle it will only report correct
S-parameter results at the two calibration planes locations (the two dashed vertical lines
in Fig. 1). The device being measured has two reference planes (shown by the circles on
each of its two ports). Note that the calibration planes are associated with the VNA and
the reference planes are associated with the two-port device; in the figure the calibration
and reference planes are not coinciding and a coordinate system is shown with its origin
at the Port 1 VNA calibration plane. For S11 the Port 1 calibration plane location is the
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physical plane of the calibration short, open, and load (note that it is very important
to have the three coincide). For S21 the Port 2 calibration plane location is the physical
plane where the calibration plane of the Port 1 of the NanoVNA-F was connected to
the Port 2 of the NanoVNA-F when the thru calibration was done.

During an S-parameters’ measurement the calibration and reference planes should
be made to coincide. However, unfortunately this is not always possible. A common
example of this not happening is when the two-port device has female SMA connectors
and the two VNA test cables end in male SMA connectors. Since for the thru calibration
an SMAF-SMAF adapter is required to connect the ends of the two test cables together,
this adapter becomes part of the thru calibration. The problem is that, when the two-
port device is measured, this adapter has to be removed. Because of the absence of
the SMAF-SMAF adapter, the calibration and reference planes do not coincide on the
Port 2 of the device, and this introduces an error in the S21 measurement.

Figure 1: Wave representation of a general two-port device

In the experiment below we will investigate a useful VNA feature that allows movement
of the VNA calibration planes location along the transmission line. This allows for
partial correction of the SMAF-SMAF adapter error just mentioned (by making the
VNA calibration planes and the device reference planes coincide), and also provides
useful additional flexibility.

To see how the calibration plane movement can be accomplished, let’s assume that
the location of the calibration plane of Port 1 is at z = 0 and the +ẑ direction is towards
the device (as shown in Fig. 1). We can then write the incident and reflected waves on
Port 1, at any z location, as

V +
1 = V +

1 |z=0 e
−γz , (1)

V −1 = V −1 |z=0 e
+γz , (2)

where the transmission line has a propagation factor γ = α + jβ.
To move the calibration plane of Port 1 from z = 0 to a new location with z = z′

we rewrite the above equations as

V +
1 = V +

1 |z=z′ e−γ(z−z′) , (3)

V −1 = V −1 |z=z′ e+γ(z−z′) , (4)
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where

V +
1 |z=z′ = V +

1

∣∣
z=0

e−γz
′
, (5)

V −1 |z=z′ = V −1 |z=0 e
+γz′ , (6)

and V +
1 |z=z′ and V −1 |z=z′ are the complex amplitudes of the traveling waves at the

moved calibration plane location (now located at z = z′).
From the above Eqs. 5 and 6 we see that the movement of the calibration plane of

Port 1 by a distance z′ will cause the S11|z=z′ to become

S11|z=z′ =
V −1
V +

1

∣∣∣∣
z=z′

=
V −1
V +

1

∣∣∣∣
z=0

e+2γz′ = S11|z=0 e
+2γz′ . (7)

The process of moving the calibration plane location by a distance ` = z′ is usually
referred to as “port extension,” in VNA parlance. However, in the NanoVNA-F it is
referred to instead as “electrical delay.” Regardless of how it is called, VNAs allow you
to provide the desired displacement of the Port 1 location by giving the time τ that
the wave V +

1 will take to go to the plane with z = z′ and come back to the z = 0
plane (travel a distance 2`), together with the transmission line velocity factor VF and
attenuation factor α. And from these three parameters it will conveniently implement
the desired S11 parameter change given by Eq. 7 automatically (i.e., do the required
complex phase adjustment). Note that τ can be either positive or negative, a negative
τ value corresponds to a negative z′ movement of the calibration plane.

Assuming that the transmission line losses are small and hence can be safely ne-
glected (i.e., α = 0), the above Eq. 7 simplifies to

S11|z=z′ = S11|z=0 e
+j2βz′ , (8)

and this is what is implemented inside the NanoVNA-F (in other words, transmission
line losses are ignored in the NanoVNA-F electrical delay implementation).

Recalling that
2` = up τ = c0 VF τ , (9)

where c0 = 299, 792, 458 m/s is the speed of light in free space, we have a convenient
formula for specifying the time delay τ :

τ =
2

c0 VF
` . (10)

A convenient rule of thumb to remember is that, since the VF of most coaxial
cables is around 0.7, every 1 mm of S11 calibration plane movement corresponds
to τ ≈ 10 ps.

Because of the factor 2 present in the above equations, when moving the calibration
plane for S11 measurements, the delay τ given by Eq. 10 corresponds to a length ` of the
calibration plane movement, since the wave V +

1 that is coming from the NanoVNA-F
generator will have to perform a round trip to return to the NanoVNA-F Port 1 as V −1 .
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In a similar manner, the calibration plane of Port 2 can also be moved. However,
when moving the calibration plane for S21 measurements, the same delay τ corresponds
to a length 2` of the calibration plane movement, as there are no round trips involved;
the wave V +

1 coming from the NanoVNA-F generator will simply travel an extra length
2` to surface at the NanoVNA-F Port 2 as V −2 ).

In summary, for S11 a positive value for τ will cause the calibration plane of Port 1
of the NanoVNA-F to be moved a positive distance ` towards the device (i.e., away from
the Port 1 of the VNA), according to Eq. 10. And for S21 the same τ value will cause
the calibration plane of Port 2 of the NanoVNA-F to be moved a positive distance 2`
towards the device (i.e., away from the Port 2 of the VNA).

Another convenient rule of thumb to remember is that, since the VF of most
coaxial cables is around 0.7, every 2 mm of S21 calibration plane movement
corresponds to τ ≈ 10 ps.

Let’s now exercise the above newly learned port-extension capability in a useful
experiment. We will measure the velocity factor VF of two devices: the RG 316 coaxial
cable and the SMAM-to-SMAM adapter, which has a very small length.

1. Carefully measure the length of the ∼210 mm long RG316 NanoVNA-F coaxial
test cable. Note again that what you need here is the length of the part of the
cable that actually carries signal (if you are still having problems understanding
what this means, please look where the dielectric starts, inside the hexagonal nut
of the SMA male connectors, at the end of the cables).

2. Observing that we will be doing measurements directly at the female SMA port
of the NanoVNA-F, and without using the NanoVNASaver software, select the
proper calibration to use. Make sure to verify that the stored calibration is still
valid, and to recalibrate the VNA if it isn’t.

3. Connect one of the two available sections of RG316 NanoVNA-F test cable to the
Port 1 of the VNA, connect the calibration female short to the other end, and
observe the displayed complex values of its S11 in the Smith Chart (green trace).
Note that the phase of the S11 is going through a bit more than two full turns
(i.e., a bit more than 2 × 360◦ of phase change with frequency), starting from the
short-circuit location. Explain why this is happening.

4. Let’s now move the location of the Port 1 of the NanoVNA-F (currently located
at the calibration plane) all the way to the end of the cable, to the precise location
of the short circuit plane. To do this used the previously boxed results to estimate
the required round-trip propagation delay τ and input it into the NanoVNA-F.

The location where the τ value needs to be stored is located deep inside the
NanoVNA-F menu tree, and at a somewhat unexpected place. More specifically,
select “DISPLAY,” “SCALE,” and “ELECTRICAL DELAY.” A white numerical
keyboard will then appear on the screen and you can then type in the desired
time delay value τ , in either ns (nano seconds) or ps (pico seconds). The τ value
can be either positive or negative and the left arrow erases typed digits. When
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done typing the desired τ value, press either n or p to enter the delay into the
NanoVNA-F memory. The value of the entered τ will then show in white letters
on the top left of the NanoVNA-F screen (third line, labeled “Edelay.”). When
τ = 0 no values are shown. Also shown to the right of the delay number will be
the corresponding transmission-line distance traveled by a wave during the time
τ , for the velocity factor shown in percent. You can enter the velocity factor of
your cable (in percent of the velocity of light in vacuum) by selecting “DISPLAY,”
“TRANSFORM,” and“VELOCITY FACTOR” on the menu.

By the way, you can also move the port location inside the NanoVNASaver soft-
ware. However we are not exercising this option at this time.

5. Take a look at the S11 plot on the Smith Chart. Is it what you expect to see
with the measurement plane on top of the short-circuit plane? If not iterate the
τ value until you get the expected result. When the expected result is achieved
the τ value will be the precise round-trip delay from the calibration plane to the
short.

6. Use the previously determined delay τ to determine the velocity factor VF of the
coaxial cable, and compare it with the previously obtained values. Observe that
in principle when you move the calibration plane to the end of the coaxial cable
it is almost as if you had calibrated the VNA at the end of the coaxial cable;
almost but not really true. When you actually calibrate the VNA at the end of
the cable, you are calibrating out all the imperfections of the cable and connectors
up to the calibrating plane, and this does not occur when you simply move the
calibration plane. Whenever possible, calibrating at the end of the cable will then
yield a much higher measurement accuracy. You should then consider moving the
calibration plane with prudence, avoid using it, and only using it whenever no
better alternative is available.

7. To conclude this section, use what you just learned to measure the velocity factor
VF of the SMAM-to-SMAM adapter, and hence determine the relative permittiv-
ity εr of the dielectric used inside the adapter. Observe that the physical length
of the adapter is quite small, and you are dealing with waves moving at breakneck
speed. Nevertheless, you and the NanoVNA-F should be able to easily handle the
above task very precisely.

3 Simulated Pulse Propagation in Transmission

Lines

In the previous section you used the time that signals take to propagate along a trans-
mission line to measure distances. The methodology used then hints that if one knows
the characteristics of S11 as a function of frequency, for example, one should be able
to extract information about what is happening on the transmission line of Port 1 as
a function of time. The technique that allows this to be done is based on the Fourier
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transform pair, which is given by2

F (ω) = F [f(t)] =

+∞∫
−∞

f(t) e−jωt dt , (11)

f(t) = F i[F (ω)] =
1

2π

+∞∫
−∞

F (ω) e+jωt dω . (12)

The F (ω) given by Eq. 11 is called the Fourier transform of the time-dependent signal
f(t) (represented by F [f(t)]), and the f(t) given by Eq. 12 is called the inverse Fourier
transform of the frequency-dependent signal F (ω) (represented by F i[F (ω)]). In the
above equations t is time and ω is the angular frequency, given by

ω = 2πf , (13)

with f being the frequency of the signal.
When you measured S11 as a function of frequency (i.e., S11(ω)), you measured the

F (ω) = S11(ω) of Eq. 12. Hence by performing the indicated integral you should be
able to calculate the corresponding S11(t).

A very important and useful result is the physical interpretation of this calculated
S11(t): it can be shown that S11(t) is the time response of the Port 1 of the two-port
device to a wave impulse of unit strength that fired at t = 0. In other words, S11(t) is
the time response of the Port 1 of the device when a v+

1 wave impulse of unit strength,
with peak at the calibration plane at the time t = 0, is sent towards the device3. This
physical interpretation will be proven shortly, but first let’s discuss in more detail the
unit strength impulse.

An impulse of unit strength, firing at t = 0, is usually represented by δ(t) and has
the property that it only has amplitude significantly different than zero near t = 0 (e.g.,
it only lasts for a short time near the firing time), such that

δ(t) =

{
∞ if t = 0
0 if t 6= 0

, (14)

with the property
+∞∫
−∞

δ(t) dt = 1 . (15)

The impulse is said to have unit strength because of this equal to one integral property4.
An intuitive way to physically grasp the characteristics of the unit strength impulse can

2D. K. Cheng, Analysis of Linear Systems, Addison-Wesley Publishing Co., Inc., 1959, Sec. 5-6.
3The situation is similar to the one discussed in the Example 9-11, pag. 478, of D. K. Cheng,

Field and Wave Electromagnetics, Second edition, Addison-Wesley Pub. Co., 1989, provided that you
assume that the pulse duration is very small and its peak voltage is very large.

4The impulse is commonly known as the Dirac Delta Function. It is a generalized function which
was actually created before Prof. Paul A. M. Dirac’s time.

6



be achieved by considering its Gaussian approximation

δ(t) ≈ 1

σ
√

2π
e−

t2

2σ2 , (16)

which satisfies Eq. 15 for any chosen standard deviation value (i.e., σ). Note that by
reducing σ the impulse can be concentrated as much as desired to the neighborhood of
t = 0, at the expense of having higher peak values. And in the limit of σ → 0, Eq. 16
becomes δ(t).

Before moving forward let’s prove the italicized statement made above, namely:
S11(t) is the time response of the Port 1 of the device when a v+

1 wave impulse of unit
strength, with peak at the calibration plane at the time t = 0, is sent towards the
device. To prove this fact first observe that the spectrum Gi(ω) associated with an
arbitrary signal gi(t) is given by Eq. 11 as

Gi(ω) = F [gi(t)] =

+∞∫
−∞

gi(t) e
−jωt dt , (17)

and since the S11(ω) provides the S11 of the two-port network at each frequency ω, the
corresponding frequency-domain response Go(ω) of the two-port network will be

Go(ω) = Gi(ω)× S11(ω) , (18)

and the associated time-domain response of the two-port network, when it is excited
by gi(t), is then be given by Eq. 12 as

go(t) = F i[Gi(ω)× S11(ω)] =
1

2π

+∞∫
−∞

Gi(ω)× S11(ω) e+jωt dω . (19)

Now, if gi(t) is an impulse of unit strength (i.e., gi(t) = δ(t)), Eqs. 17, 14, and 15 show
that

Gi(ω) = F [δ(t)] =

+∞∫
−∞

δ(t) e−jωt dt = 1 , (20)

and Eq. 19 yields the impulse response of the two-port network as

go(t) = F i[Gi(ω)× S11(ω)] =
1

2π

+∞∫
−∞

1× S11(ω) e+jωt dω = S11(t) , (21)

which proves that S11(t) is the time response of the Port 1 of the device when a v+
1

wave impulse of unit strength, with peak at the calibration plane at the time t = 0, is
sent towards the device.

Equation 12 carries several difficulties in a practical implementation. The first one
is that it requires an integration over negative ω values, and negative frequencies do
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not exist in practical measurements of F (ω). To see how to handle this problem recall
that f(t) must always be a real function of time and substitute Euler’s identity

e−jωt = cos(ωt)− j sin(ωt) (22)

in Eq. 11 to obtain

F (ω) =

+∞∫
−∞

f(t) cos(ωt) dt+ j

+∞∫
−∞

f(t) sin(ωt) dt . (23)

Equation 23 can now be used to mathematically extend F (ω) for negative frequencies
by replacing ω by −ω. This yields

F (−ω) =

+∞∫
−∞

f(t) cos(ωt) dt− j
+∞∫
−∞

f(t) sin(ωt) dt . (24)

We then see that F (−ω) can easily be obtained from any measured F (ω) using

F (−ω) = F ∗(ω) , (25)

where the asterisk denotes complex conjugation.
Another difficulty of Eq. 12 is that on frequency-domain measurements F (ω) is only

known at the discrete measurement frequencies ωn. Assuming that these frequencies
are all uniformly spaced by ∆ω, we then in principle only have available the discrete
F (ω) values

F (ωn) = F (n∆ω), (26)

where n = −∞, ... − 3,−2,−1, 0,+1,+2,+3, ... +∞. We can then approximate the
integral of Eq. 12 by a sum to obtain

f(t) =
1

2π

n=+∞∑
n=−∞

F (n∆ω) e+jn∆ω t ∆ω . (27)

Although Eqs. 25 and 27 solve the two practical difficulties mentioned previously,
another difficulty still remains: the required infinite number of F (n∆ω) values is never
available. However, this can be remedied by assuming that, as |n| increases towards
infinite, the F (n∆ω) values becomes negligible. We can then truncate our sumation at
a sufficiently large n = N value to write

f(t) =
∆ω

2π

n=+N∑
n=−N

F (n∆ω) e+jn∆ω t . (28)

In practical situations often happens that one is forced to use an N that does not
assure that F (n∆ω) has reached values that can be neglected (an example of such a
case is considered below, in the numerical simulations). However, and this may surprise
you, even if F (n∆ω) has not reached values that can be neglected at the frequency
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band edge, Eq. 28 still works reasonably well. Nevertheless, to handle the situations
where the truncation is a problem, a windowing (or apodizing) function W (n∆ω) can
be introduced into Eq. 28 to yield

f(t) =
∆ω

2π

n=+N∑
n=−N

F (n∆ω)W (n∆ω) e+jn∆ω t . (29)

The function W (n∆ω) is carefully selected to artificially taper down the values of
F (n∆ω)×W (n∆ω) to negligible levels at n = N , without introducing significant
artifacts into the f(t) result. How this can be successfully achieved is discussed in more
detail below, but for now let’s use W (n∆ω) = 1 (i.e., no windowing function will be
applied).

There is one characteristic left in Eq. 29 that is inconvenient in many practical
situations. Since unit strength impulses have very high amplitudes (theoretically infi-
nite), the f(t) results provided by Eq. 29 will be very large for times coinciding with
the impulse response peak location. A commonly occurring situation of this is when
F (n∆ω) = 1 and t = 0 (this happens, for example, in the S11 of very short open-
circuited cables). In these situations Eq. 29 becomes

f(t) = W0 =
∆ω

2π

n=+N∑
n=−N

W (n∆ω) . (30)

To correct for this undesirable high-amplitude effect, Eq. 29 is normalized using the W0

provided by Eq. 30 to yield the final result

f(t) =
1

W0

∆ω

2π

n=+N∑
n=−N

F (n∆ω)W (n∆ω) e+jn∆ω t , (31)

therefore limiting the peak f(t) of an open- or short-circuited cable to be +1 or −1,
respectively.

From this point onwards Eq. 31 will be referred to as the Sampled Inverse Fourier
Transform (SIFT) 5, and it will be used in this laboratory to determine the time-domain
(pulse) response of our two-port networks (e.g., transmission lines). More specifically,

when F (n∆ω) = S11(ω), the f(t) given by Eq. 31 is the time response of the
Port 1 of the device when a v+

1 wave pulse of unit amplitude (not an impulse
of unit strength), with peak at the calibration plane at the time t = 0, is sent
towards the device.

Observe that Eq. 31 is actually a Fourier series where the frequency of the highest
harmonic is

fmax =
N∆ω

2π
, (32)

5J. P. Dunsmore, Handbook of Microwave Component Measurements, John Wiley & Sons, Ltd.,
2012.
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and in practice this fmax value is determined by the highest frequency that the VNA
can reach in its measurements. Since a Fourier series is unable to accurately represent
time details smaller than about half the period associated with its highest harmonic
(simply because the highest harmonic of the Fourier series needs to be oscillating fast
enough to represent all relevant details of the function being interpolated), the time
resolution ∆t|min of the SIFT algorithm (i.e., the smallest detail that can be resolved
in time by Eq. 31) is given by

∆t|min ≈
1

2fmax
. (33)

This is a very important equation, since it provides an estimate of the time resolution
yielded by Eq. 31. It shows that the time resolution of a VNA is inversely proportional
to its maximum measurement frequency. It also shows that, if two pulses are separated
in time by less than the ∆t|min provided by Eq. 33, the SIFT processed VNA data will
be unable to display (or resolve) them as two independent pulses.

One should mention that, since algorithms are already widely available to calculate
the inverse Fourier transform of discrete frequency-domain data, apparently there seems
to be no need to have developed our own algorithm here. The celebrated Inverse Fast
Fourier Transform (IFFT) is one of these algorithms. The main advantage of the IFFT
is its unparalleled numerical efficiency (i.e., computational speed), which allows it to
process incredibly large amounts of data points very fast. However, this speed comes
with the inconvenience of array manipulation acrobatics and limits on the time spanned
and the spacing of the sample points in time. Although the numerical implementation
of Eq. 31 is much slower by comparison, it is still sufficiently fast for our needs, and
it does not suffer from the IFFT inconveniences; the pulse response f(t) can be easily
calculated at any desired time value t. For this reason Eq. 31 is then what is used
to determine time responses in modern VNA instruments, including the NanoVNA-F
(perhaps this may come as a surprise to you, but the Fast Fourier Transform algorithm
is not what is used in VNAs).

We will now use Eq. 31 to simulate and investigate how pulses propagate in trans-
mission lines. We will start by developing the required numerical Matlab tools, and
after that we will theoretically (in a numerical sense) apply these tools to two well
understood and relatively simple practical S11(f) situations: shorted and opened trans-
mission lines. This will allow you to master well most of the the techniques involved in
obtaining the time response of two-port networks, before heading out to use them on
NanoVNA-F measured data (done in the next section).

1. Start by writing a Matlab code to implement the SIFT according to Eqs. 31
and therefore calculate the f(t) associated with and arbitrary array of F (n∆ω)
values. Call this Matlab code SIFT−simulation.m. To assist with both the
understanding as well as with the debugging of your code, at first F (n∆ω) will
be a test array generated inside the code itself (by Eqs. 34 - 36), and later the
array will be the NanoVNA-F measured data.

Your code should allow the user to freely specify the number N of positive fre-
quency points and the maximum frequency fmax of the array F (n∆ω). Below
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is the example of a code that can be used to specify the frequencies in Matlab (in
this example N = 51 and the frequency band goes from -1.5 to +1.5 GHz):

nfreq = 51;

fstrt = 0.0*10^9;

fstop = 1.5*10^9;

fstep = (fstop-fstrt)/(nfreq-1);

freq = -fstop:fstep:fstop;

omega = 2*pi*freq;

omega_step = 2*pi*fstep;

Your code should also allow the user to freely control the times where the pulse
response is computed. Below is the example of a code that can be use to specify
the times in Matlab (in this example the time is running from -10 to +80 ns with
1001 time steps):

ntime = 1001;

tstrt = -10*10^-9;

tstop = 80*10^-9;

tstep = (tstop-tstrt)/(ntime-1);

time = tstrt:tstep:tstop;

2. Derive the reflection coefficient S11(ω) of both an opened and a shorted trans-
mission line of length `, characteristic impedance Z0, attenuation factor α, and
velocity factor VF , namely

S11(ω)|open = +
1− tanh(γ`)

1 + tanh(γ`)
, (34)

S11(ω)|short = − 1− tanh(γ`)

1 + tanh(γ`)
, (35)

where
γ = α + j

ω

VF c0

. (36)

Note that in practice the attenuation factor is frequency dependent (increases
with frequency). However, for the transmission lines’ lengths and frequencies
that we are considering in this laboratory, the attenuation effects are pretty much
negligible.

3. Program Eqs. 34 and 35 into your Matlab SIFT−simulation.m code, so that an
array of either S11(n∆ω)|open or S11(n∆ω)|short is generated as F (n∆ω) for your
SIFT algorithm, and hence the associated pulse response f(t) of your transmission
lines can be calculated.

4. Before heading out to process measured data, let’s first carefully experiment with
your SIFT−simulation.m Matlab code to get a solid grasp on how the above
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SIFT algorithm works by performing some simulations. To this effect, use your
code to determine the frequency-domain reflection coefficient (i.e., S11(ω)) of the
` ≈ 210 mm RG316 NanoVNA-F test cable terminated in an open circuit, over
-1.5 to +1.5 GHz with N = 51 frequency points. Assuming that the RG316 has
Z0 = 50 Ω, VF = 0.7, and α = 0, plot the |S11(ω)| and ∠S11(ω) obtained. To give
you an idea of the plot format expected, Fig. 2 shows a typical result.

Figure 2: Predicted frequency response of an open-ended 210 mm long RG316 coaxial
cable (N=51)

5. Have your code inverse Fourier transform the computed S11(ω) values of the pre-
vious item, with the window W = 1 (i.e., no windowing) and W0 = 1 (i.e., no
normalization), to obtain the time response of the epen-ended cable excited by a
v+

1 unit amplitude pulse, and plot the obtained result from -10 to 80 ns. Comment
on what you are seeing and why. In particular, explain why the impulse peaks
are so large and why the values outside the peaks are so low, relatively speaking.
In other words, explain what is going on with the Fourier transform mathematics
that causes this.

6. Add the normalization W0 to your code (given by Eq. 30) and again provide a
plot of the result, which is the time response of the Port 1 of the transmission
line when a v+

1 wave pulse of unit amplitude, with peak at the calibration plane
at the time t = 0, is sent in. Figure 3 displays a typical result.

Note that what Figure 3 depicts is actually v−1 , which is the reflection of v+
1 by the

end termination of the transmission line. Because the VNA provides a matched
termination at its Port 1 (this is implicitly assumed in in the S11 of Eqs. 34 and
35), there is no higher order reflection of v−1 by the VNA (i.e., no v+

2 ).

7. Calculate the expected reference plane arrival time ta, of the pulse reflected by
the open end of the cable, and compare with the result provided by your plot.
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Figure 3: Predicted pulse response of an open-ended 210 mm long RG316 coaxial cable
(N=51)

8. By now at least three details should have caught your eyes in the time-domain
result (if not, please take a careful look at your figure): there is more that one
pulse over the -10 to +80 ns range; there is significant ringing on both sides of
the pulse peaks, and the ringing of the first pulse starts even before t = 0. Let’s
consider only the multiple pulses in this item, and the other two effects in the
subsequent item.

From the expected ta result, you probably already suspect that the pulses located
around t = 35 and t = 69 ns may be numerical artifacts. This suspicion is
indeed correct. The artifact is caused by the fact that when the Eq. 12 integral
was discretized with frequencies spaced by ∆f , it caused the f(t) to become a
periodic function with period T = 1/∆f (the inverse Fourier integral became a
Fourier series). In other words, the sampling frequency interval ∆f determines
the spurious-free time range Tmax (also referred to as the alias-free time range in
the available literature), which is given by

Tmax =
1

∆f
. (37)

If a longer spurious-free time range is desired (or required), you will need to
reduce the ∆f used. If the frequency range must be kept constant, this can only
be achieved by increasing N . To confirm these conclusions, increase N to 101,
and then increase it again to 201. And make sure to include plots of these two
calculated pulse responses in your laboratory report.

9. Determine the maximum spurious-free time range available when N = 101 and
provide the pulse response of the cable using this maximum range in the abscissa.
Do this for both the openned and shorted cables.

10. Take a closer look at the pulse shown in your plots. For good detail generate
plots using an abscissa going only from -1 to +4 ns (Fig. 4 is an example of the
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expected result). Observe that the pulse is symmetric about its peak (if this is
not the case in your plot, you still have programming errors to find and correct)
and is far from infinitely sharp, but this was already expected from Eq. 33.

Figure 4: Predicted pulse response of an open-ended 210 mm long RG316 coaxial cable

Recalling that the transmission line currently has its end open-circuited (in other
words, the line is terminated by a load producing a reflection coefficient equal
to +1), the plot of Fig. 4 is just the excitation pulse delayed by the travel time
ta. This is a useful perspective since it allows you to take a look at the shape of
the excitation pulse whenever needed. You may want to do this, for example, to
take a look at the ringing present, the available time resolution, etc.

Determine the expected time resolution of the NanoVNA-F and compare the
result obtained with the full-width half maximum (i.e., FWHM) of the displayed
pulse.

11. Let’s now tackle the (undesirable) ringing (or sidelobes) present on both sides of
the pulse peak shown on our plots. The ringing is caused by truncating the Eq. 31
series too soon. Note that the first sidelobe level is 13.26 dB below the pulse peak
value (i.e., SLL = 13.26 dB); it can be shown that this is always the case as long
as there is no windowing function present (i.e., W (n∆ω) = 1).

One way to reduce the ringing is by adding attenuation to the cable (we have been
assuming it to be negligible). In fact, by having α = 0 we have been truncating
the Eq. 31 series without allowing the F (n∆ω) to decay at all. An equivalent
convenient more general way to achieve the same goal as adding attenuation is by
using a windowing function W (n∆ω) 6= 1 in Eq. 31. The technical literature is
full of different windowing functions, each with its own particular characteristics
and behaviors. For the task at hand we will employ a simple Gaussian window,
which is given by

W (n∆ω) = e−ξ p ( nN )
2

, (38)

where the constant ξ = 0.11512925465 has been selected to make p the desired
amplitude taper value at the edge of the frequency band, in dB (e.g., p = 20
causes a 20 dB taper at the frequency N∆f , p = 30 causes a 30 dB taper, and so
on).
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Implement Eq. 38 in your Matlab SIFT−simulation.m code and provide both the
S11×W plot as well as the corresponding pulse response of the cable using a 30 dB
taper on the Gaussian window. For good detail resolution use again an abscissa
going from -1 to +4 ns. Determine the value of the time ta associated with the
pulse response peak, the FWHM value, as well as the SLL value. Make sure to
comment on the desirable and undesirable significant effects that the windowing
function has on the coaxial cable simulated pulse response.

4 Measured Pulse Propagation on Transmission

Lines

Armed with the acquired knowledge and material from the previous section, we will
now proceed to time-domain process experimental data acquired using VNAs. For this
you will be needing the Matlab SIFT−simulation.m code developed in the previous
section well understood, properly working, and without any bugs. I strongly suggest
that you do not even think about starting to work on the material below before this is
the case.

1. Duplicate the Matlab SIFT−simulation.m code and name the duplicated version
SIFT−NanoVNAF.m. Store the SIFT−simulation.m code in a safe place (you
will very probably still need it) and modify the SIFT−NanoVNAF.m code to
read in the Touchstone s1p data files generated by the NanoVNA-F.

2. Using the NanoVNASaver software, and an appropriate NanoVNA-F calibration,
measure and save the S11 of one of the RG316 ` ≈ 210 mm long test cables with
both an open and a short at the end (to eliminate avoidable errors, make sure
to use for ` the precise measured value of your cable). A total of 101 points,
spanning the 10 kHz to 1.5 GHz frequency range, is sufficient. Save the measured
data in the files “Opened−cable.s1p” and “Shorted−cable.s1p,” respectively.

3. Modify your SIFT−NanoVNAF.m code to properly handle Touchstone files’ data,
process the measured values, and provide plots with both the measured S11×W
results as well as the time-domain pulse response of the cable. Determine the value
ta associated with the pulse response peak and compare with both the numerical
simulations of the previous section as well as with the expected results.

Note that the SIFT algorithm requires a measured point at zero frequency, and
instead the lowest available point is at 10 kHz (VNAs never operate down to zero
frequencies). Observing that the 10 kHz S11 measured value is pretty much the
expected value at 0 kHz, provide the required 0 kHz value by simply moving the
10 kHz point to zero frequency (make sure to move only the 10 kHz point).

When compared to all other points, the above moved frequency point will have a
slightly increased spacing to its adjacent points. For the case at hand of 101 points
spanning the 10 kHz to 1.5 GHz frequency range, the spacing between points
is (1500 - 0.01)/100 = 14,9999 kHz, with exception of the spacing of the 0 kHz
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point, which is 14,9999 + 10 = 15,0099 kHz. This very small spacing difference
(only 0.07%) is inconsequential for our purposes. In case you are wondering, VNAs
routinely numerically extrapolate their lowest measured frequencies to obtain the
required zero-frequency value for their time-domain transforms. Our simple shift
is just a simplified version of this extrapolation.

4. Let’s now tackle a more sophisticated time-domain transmission-line measure-
ment. Start by making a transmission-line cascade by connecting the `1 ≈ 210 mm
long RG316 test cable to the Port 1 of the NanoVNA-F, then connect the other end
of the cable to the SMAF-DIP8-SMAF test fixture, then connect the `2 ≈ 200 mm
long 26 AWG parallel-wire line between the two female connectors of the test fix-
ture, then connect the `3 ≈ 2000 mm long RG316 cable to the free SMA female
connector of the test fixture, and finally connect a short circuit to the end of the
`3 ≈ 2000 mm long RG316 cable (see Fig. 5). Make sure to carefully measure and
record the lengths `1, `2, and `3 of the three cables used, as they will be needed
below.

Figure 5: Transmission-line cascade to exercise time-domain measurements

5. Using the NanoVNASaver software, with an appropriate NanoVNA-F calibration,
measure and save the S11 of the transmission-line cascade over the 10 kHz to
1.5 GHz frequency range. Since you are dealing with a relatively long cable, use
a total of 2×101 frequency points to well sample the relatively fast varying S11

features with frequency (you should also try the usual 101 frequency points to
experience the negative effects of an insufficient number of sample points). Save
the measured data in a file named “Cascade−of−cables.s1p.”

6. Determine the spurious-free time range of your measurement.

7. Process the measured data to obtain the time-domain pulse response of the
transmission-line cascade and plot the result over the entire spurious-free (i.e.,
alias-free) time range of your measurement, and never beyond that, starting at
t = −5 ns. Experiment with the window edge taper to get a relatively clean result
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(a 30 dB taper is usually a good compromise between maximum resolution and
undesired artifacts).

Please make sure to include a computer generated dB plot showing the measured
pulse response of the transmission-line cascade, with the scales properly labeled.
Your plot should be similar to the one shown on the right side of Fig. 4.

8. Carefully discuss in detail the causes of the three pulses with largest amplitude
present in your measured plot. In particular, make sure to provide the timing
of each of the three pulses’ peaks (i.e., t1, t2, and t3, respectively, in ns) and to
explain why some of the pulses are positive and some are negative.

9. Sketch the bounce diagram of the transmission line cascade, when it is excited
by a rectangular pulse of unit amplitude and width of 0.4 ns (this is the FWHM
of the pulse depicted in Fig. 4), over only the 0 to 5 ns time interval, and over
only a length equal to the sum of the first two transmission lines of the cascade
(i.e., `1 + `2).

Observe that the bounce diagram needs to include reflections at the junction be-
tween the `1 = 210 mm long RG316 coaxial line and the `2 = 200 mm long
26 AWG parallel wire line, and also at the junction between the `2 long paral-
lel wire line and the `3 = 2000 mm long RG316 coaxial line. And in the first
junction you will also need to properly determine and account for the associated
transmission coefficient.

10. Sketch the expected pulse response versus time diagram of the transmission line
cascade, when it is excited by a rectangular pulse of unit amplitude and width of
0.4 ns, over only the 0 to 5 ns time interval. Make sure to clearly indicate the
calculated amplitudes as well as the times associated with all the pulses’ centers.

11. Use your measured plot to determine the characteristic impedance Z0p and the
velocity factor V F of the parallel-wire line.

5 Measured Pulse Propagation on Transmission

Lines Using the VNA Internal Algorithm

As a last task for this laboratory, you will become acquainted with the fact that modern
VNAs already come with the SIFT capability implemented in their internal software,
and it can be used with any one of the measured S-parameters. The NanoVNA-F is
no different and the SIFT capability can be used with either the measured S11(f) or
S21(f).

The NanoVNA-F SIFT capability can be found in its menu tree, under the “DISPLAY”
and “TRANSFORM” buttons. In there you will find a place to turn the SIFT on or
off, to input the transmission line velocity factor (in percent), as well as to select be-
tween three window tapers (i.e., “MINIMUM,” “NORMAL,” and “MAXIMUM”). With
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the choice of “MINIMUM” no window is applied, while the other two choices progres-
sive impart larger amplitude tapers to the S-parameters being processed6. Also in the
“TRANSFORM” menu you will find two choices for the low-frequency extrapolation to
be used: “LOW PASS IMPULSE” and “BAND PASS.” The “LOW PASS IMPULSE”
option corresponds to what we have used in our Matlab implemented algorithm, and
the “BAND PASS” option applies the selected window to both the near-zero and high
S11(f) frequencies.

When the NanoVNA-F SIFT capability is turned on, the horizontal display scale
turns to time (in ns), the vertical scale will show the value of the |f(t)| (in dB), and
the sign of f(t) is displayed in the associated phase scale (either 0◦ or 180◦, since f(t) is
real). The marker information will also change to time and distance, where the distance
takes into account the displayed velocity factor (in percent). The range of the time scale
selected automatically to display only the spurious-free region, and is controlled by the
frequency scan together with the number of frequency points used, according to Eq. 37.

Also in the NanoVNA-F “TRANSFORM” menu you will find a perhaps unfamiliar
“LOW PASS STEP” selection. This alternative yields the time response for a unit-step
excitation firing at t = 0 (i.e., the Heaviside Step Function); a useful capability that
has not been previously explored in this laboratory. The time response associated with
this type of excitation can in principle be determined with the δ(t) of Eq. 20 replaced
by the Heaviside Step Function u(t), and working out the associated math. This will
not be done in this laboratory though. The “LOW PASS STEP” selection is useful,
among other things, to get the characteristic impedance of transmission lines, as you
will find out below.

When the unit-step excitation is used, the two white values that are provided in the
NanoVNA-F screen line that starts with the green words “S11 SMITH” correspond to
the measured complex impedance (i.e., ratio of the complex voltage and current) at the
VNA calibration plane, at the time associated with the Mark 1.

An important NanoVNA-F characteristic to keep in mind as you move forward is
that the SOLT calibration must be done with the NanoVNA-F set to operate in the
frequency-domain mode. Calibrating while the NanoVNA-F is operating in the time-
domain mode will yield incorrect results. This is also true if the NanoVNA is being
calibrated through the NanoVNASaver software.

1. Let’s now start by measuring the loss of the `3 = 2000 mm long RG316 cable, a
task that you already performed in a previous laboratory, but in the frequency
domain. For this use the internal NanoVNA-F SIFT capability, in “LOW PASS
IMPULSE” mode, to process the S11(f) from an `3 long RG316 cable connected to

6The NanoVNA-F does not use the Gaussian window of Eq. 38. Instead it implements the so called
Kaiser window that is commonly used in almost all VNAs. This window is named after J. F. Kaiser
of the paper Nonrecursive Digital Filter Design Using the I0-Sinh Window Function, Proceedings of
the 1974 IEEE International Symposium on Circuits and Systems, April 1974, pp. 20–23. The taper
provided by the Kaiser window is controlled by a parameter called β. The “MINIMUM,” “NORMAL,”
and “MAXIMUM” settings implement Kaiser windows with parameter β = 0, 6, and 13, respectively.
With β = 0 no window is applied to the data. The β = 6 choice applies a taper of about 34 dB, and
yields results comparable to the Gaussian window with 30 dB taper that you used previously (i.e.,
p = 30 in Eq. 38). And the β = 13 of the “MAXIMUM” setting further increases the applied taper.
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the Port 1 of the NanoVNA-F. Provide an annotated picture of the NanoVNA-F
screen with your result, clearly identifying the reflection coming from the end of
the cable, and from it calculate the one-way loss (as opposed to round-trip loss)
L3 of the cable, in dB.

Note that the above L3 is an averaged result, since all measured frequencies were
involved in its determination.

2. Use the technique of the previous item to measure the averaged time-domain
one-way loss L1, in dB, of the `1 = 210 mm long RG316 cable.

3. Again use the technique of the previous item to measure the averaged time-domain
one-way loss L2, in dB, of the `2 = 200 mm long 26 AWG parallel wire line.

4. Let’s now measure the reflection coefficient of the Port 2 of the NanoVNA-F, a
task that you already performed in a previous laboratory, but in the frequency
domain. For this use again the internal NanoVNA-F SIFT capability, in “LOW
PASS IMPULSE” mode, to process the S11(f) from a `3 = 2000 mm long RG316
cable connected between Ports 1 and 2 of the NanoVNA-F. Provide an anno-
tated picture of the NanoVNA-F screen with your result, clearly identifying the
reflection coming from Port 2, and from it calculate the reflection coefficient Γ2

of Port 2, in dB.

The use of a long cable in this measurement conveniently allows you to unambigu-
ously identify the reflection coming from Port 2. However, a long cable comes with
significant losses, and this has to be properly accounted for in your Γ2 calculation.

Observe again that your measurement is only able to provide a frequency-averaged
value of the Γ2, since the pulse is made up of all frequencies available in the
frequency band of your measurement.

5. Modify the technique that you learned in the previous item to measure the re-
flection coefficient Γ1 of Port 1 of the NanoVNA-F, in dB. In VNA parlance this
reflection coefficient is referred to as the Port 1 source match. Please make sure
to provide a picture of your measurement setup.

Note that, for high S-parameter measurement accuracy, the reflection coefficients
of Ports 1 and 2 of the VNA need to be made as small as possible. Since, and
as we learned in a previous laboratory, S-parameters must to be measured with
Ports 1 and 2 providing matched terminations to the device being measured.

In the NanoVNA-F, the small Γ2 value is implemented by a passive circuit, since
Port 2 is passive (no calibration improvement is then possible). However, since
Port 1 is active, its Γ1 value is improved through the SOLT callibration and its
associated processing. The advantage of this is that a much smaller Γ1 value can
be obtained. VNAs that have active Ports 1 and 2 have then the advantage that
they can provide excellent source matches for both ports.

6. Use the internal NanoVNA-F SIFT capability, in “LOW PASS IMPULSE” mode,
to process the S11(f) of the transmission-line cascade that you measured previ-
ously. Again carefully identify the three pulses with largest amplitude present in
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your measurement. Compare the timing of each of the three pulses with the values
you measured before (i.e., t1, t2, and t3, respectively), determine the associated
reflection coefficients, and comment on your results.

7. Sketch the expected pulse response versus time diagram of the transmission-line
cascade, when it is excited by a Heaviside step function of unit amplitude, over
only the 0 to 5 ns time interval. Make sure to clearly indicate the calculated
amplitudes as well as the times associated with all the voltage transitions.

8. To conclude our laboratory, use the internal NanoVNA-F SIFT capability, in
“LOW PASS STEP” mode, to process the measured S11(f) of the transmission-
line cascade. Use the obtained time-domain results, together with the bounce
diagram of the previous item, to determine the characteristic impedance Z0 of the
RG316 cable as well as the characteristic impedance Z0p of the 26 AWG parallel-
wire line. Feel free to experiment with the available Fourier Transform windows,
and the choices for the number of frequency points, in order to best adjust the
time plot for accurate readings.

Please make sure to include an annotated picture of the NanoVNA-F screen show-
ing the Heaviside step function response of this item. In particular, the picture
should clearly indicate what time markers were used to determine Z0 and Z0p,
and your report should justify these choices. Furthermore, you should clearly in-
dicate how you performed the calculations that yielded the Z0 and the Z0p values
obtained.
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