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1 Laboratory Objective

In a previous laboratory we studied in detail wire antennas when they operate trans-
mitting energy. This is only half of the picture though, since in any communication link
we also need to have antennas operating receiving electromagnetic energy. With this in
mind, in this laboratory we will continue our study of antennas, this time considering
their operation as they receive electromagnetic energy.

As always, we will approach the material at hand from both the theoretical and
the experimental viewpoints. Again here we will first go over the theory involved, then
perform some numerical simulations, and finally we will confirm our predictions through
detailed experiments. To be successful in this laboratory you need to have studied in
detail the material covered in Chap. 11 of our textbook1, and also study the theory
presented ahead.

As you have already observed multiple times, each laboratory relies heavily on the
material learned in previous classes and also all previous laboratories. More than ever
this is true with the current laboratory; to be able to handle this laboratory you will ab-
solutely need to have successfully completed the previous laboratory that dealt with wire
antennas operating in transmission. This is a cardinal requirement, since both labora-
tories complement and rely heavily on each other (for instance, you will be augmenting
and modifying the Matlab code that you developed for the previous laboratory). If
then for any reason you did not successfully complete the Antennas in Transmission
laboratory, you will need to go back and do so. The current laboratory will also take
advantage of some basic material that should be familiar to you from previous linear
algebra courses.

As a result of this laboratory you will need to generate and submit a laboratory
report for grading. The report should have each of its sections and subsections num-
bered according to this laboratory manual, and be a detailed document with all your
derivations, calculations, design efforts, measurement results, conclusions, drawings,
plots, relevant photos of all constructed components (to showcase your very important
high-frequency craftsmanship), and printouts of any developed software.

Note that, to maximize the learning experience, the laboratory has been designed to
be carried out individually, hence each person in the class received their own individual
lab kits. Consequently, the experiment and the corresponding report has to be done
completely individually.

c© A. Prata 2019 – 2024. This document is licensed under a Creative Commons Attribution
by-nc-nd 4.0 International License, https://creativecommons.org/licenses/by-nc-nd/4.0/

Document version: January 8, 2024, at 11:44 o’clock
1D. K. Cheng, Field and Wave Electromagnetics, Second edition, Addison-Wesley Pub. Co., 1989.
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2 Mutual Impedance between Two Linear Dipole

Antennas

In a general communication link two antennas are used to transfer electromagnetic
energy using the intervening space as a waveguide. Now that we understand how a
single antenna operates when it is transmitting energy, in this section we will consider
in detail how a communication link between two antennas is achieved. With this in mind
consider two dipole antennas (labeled 1 and 2) located in free space and separated by
a distance `, as shown in Fig. 1. Note that for drawing simplicity the two antennas
are depicted parallel to each other, with the distance ` measured between their centers
and perpendicular to the dipoles’ arms. Although this particular orientation of the two
dipole antennas relative to each other maximizes the power transfer, since the peak
of their radiation patterns are aimed at each other, the link will still work, but less
efficiently, if the two antennas are not perfectly aligned. The antennas 1 and 2 have
lengths 2h1 and 2h2 and diameters 2a1 and 2a2, respectively, and it will be assumed
that the diameters of the two antennas are such that 2a1 � λ0 and 2a2 � λ0.

Figure 1: Geometry for determining the mutual impedance between two dipole antennas

The communication link shown in Fig. 1 is clearly a two-port network and hence we
know that its behavior is governed by the circuit equations

V1 = Z11 I1 + Z12 I2 , (1)

V2 = Z21 I1 + Z22 I2 , (2)

where the impedance matrix elements (i.e., Z11, Z12, Z21, and Z22) must be determined
using Maxwell’s Equations, as opposed to Kircchoff’s voltage and current laws, since
they are originating from the air link (i.e., electromagnetic wave coupling) between the
two antennas.

In order to determine how much energy is produced in the terminals of antenna 2
(or 1) when antenna 1 (or 2) is transmitting we need to determine the electromagnetic
coupling between the two antennas. To accomplish this we will basically proceed as in
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the previous laboratory, and rely on the complex Poynting theorem. To this effect note
that a single closed mathematical surface S1+S2+S3 is shown snugly enclosing the two
antennas of Fig. 1, and this surface will be used in the derivation below. Observe that
a snug surface is needed in order to capture all the relevant reactive energy stored in
the space surrounded by the two antennas.

The terminal voltages and currents of Eqs. 1 and 2 (i.e., V1, I1 and V2, I2) are as-
sociated with whatever circuits are connected to the antennas; they are either being
produced by transmitters connected to the antennas, or they are being produced by the
signals received by the antennas. In either case, time-averaged complex powers

P1 =
1

2
V1I

∗
1 , (3)

P2 =
1

2
V2I

∗
2 , (4)

are being delivered to antennas 1 and 2, respectively. Note that, according to the
polarities shown in Fig. 1, the real parts of the above P1 and P2 will automatically come
out negative when the antennas are receiving energy. Assuming that the antennas have
negligible losses, the power delivered to the terminals of the two antennas (i.e., P1 +P2)
must be equal to the power crossing the surface S1+S2+S3 shown in Fig. 1, and hence
we can use the Poynting vector to write

1

2
V1I

∗
1 +

1

2
V2I

∗
2 =

1

2

∫
S1

~E × ~H∗ · ~ds+
1

2

∫
S2

~E × ~H∗ · ~ds+
1

2

∫
S3

~E × ~H∗ · ~ds . (5)

Before proceeding we need to discuss in more detail the role of the conductors present
in the above geometry. It turns out that if you remove all the electric conductors of the
geometry, but somehow mathematically leave all the flowing electric currents unchanged
and in place, it can be shown that the electromagnetic field present remains everywhere
unchanged. In practice the electric conductors are then “only” needed to provide a
medium for the currents to flow along the desired paths (currents simply can’t be made
to flow along any desired path in vacuum). However, mathematically (i.e., on paper)
conductors are not needed after the currents are flowing. Hence, and as long as you keep
every current the same in your theoretical model (again, this is of course only possible
on paper), you can remove all the conductors, and all the electromagnetic fields, with
their associated currents and voltages, will remain unchanged. Conceptually this is a
very a useful result, since it provides us with an equivalent geometry that is free space
everywhere (no conductors to worry about). From now on we will then assume that we
did this to the geometry of Fig. 1 and we are only considering its free-space equivalent.

Returning to Eq. 5, let’s now assume that the surface S3 that connects the two
antennas is basically a long straw with negligible diameter. In this case the surface
area of the straw is negligible and consequently its corresponding integral contribution
to Eq. 5 is negligible and can be discarded. Hence, observing that the electromagnetic
field of the geometry is basically a superposition of the fields radiated individually by
antennas 1 and 2, namely ~E1, ~H1 and ~E2, ~H2, respectively, Eq. 5 becomes

V1I
∗
1 + V2I

∗
2 =

∫
S1

( ~E1 + ~E2)× ( ~H1 + ~H2)
∗ · ~ds+

∫
S2

( ~E1 + ~E2)× ( ~H1 + ~H2)
∗ · ~ds . (6)
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Now, substituting Eqs. 1 and 2 on the left side of Eq. 6 and expanding the right
side yields

I1I
∗
1Z11 + I2I

∗
1Z12 + I1I

∗
2Z21 + I2I

∗
2Z22 =

∫
S1

~E1 × ~H∗1 · ~ds+

∫
S1

~E1 × ~H∗2 · ~ds

+

∫
S1

~E2 × ~H∗1 · ~ds+

∫
S1

~E2 × ~H∗2 · ~ds

+

∫
S2

~E1 × ~H∗1 · ~ds+

∫
S2

~E1 × ~H∗2 · ~ds

+

∫
S2

~E2 × ~H∗1 · ~ds+

∫
S2

~E2 × ~H∗2 · ~ds , (7)

which can be rewritten as

I1I
∗
1Z11+I2I

∗
1Z12+I1I

∗
2Z21+I2I

∗
2Z22 = I1I

∗
1

∫
S1

~E1

I1
×

~H∗1
I∗1
· ~ds+

∫
S2

~E1

I1
×

~H∗1
I∗1
· ~ds


+ I2I

∗
1

∫
S1

~E2

I2
×

~H∗1
I∗1
· ~ds+

∫
S2

~E2

I2
×

~H∗1
I∗1
· ~ds


+ I1I

∗
2

∫
S1

~E1

I1
×

~H∗2
I∗2
· ~ds+

∫
S2

~E1

I1
×

~H∗2
I∗2
· ~ds


+ I2I

∗
2

∫
S1

~E2

I2
×

~H∗2
I∗2
· ~ds+

∫
S2

~E2

I2
×

~H∗2
I∗2
· ~ds

. (8)

Observing that the electromagnetic field ~E1, ~H1 is proportional to I1 and the electro-
magnetic field ~E2, ~H2, is proportional to I2, we can see that each of the four terms inside
brackets depend only on the geometry, and not on the currents. Hence we see that

Z11 =

∫
S1

~E1

I1
×

~H∗1
I∗1
· ~ds+

∫
S2

~E1

I1
×

~H∗1
I∗1
· ~ds , (9)

Z12 =

∫
S1

~E2

I2
×

~H∗1
I∗1
· ~ds+

∫
S2

~E2

I2
×

~H∗1
I∗1
· ~ds , (10)

Z21 =

∫
S2

~E1

I1
×

~H∗2
I∗2
· ~ds+

∫
S1

~E1

I1
×

~H∗2
I∗2
· ~ds , (11)

Z22 =

∫
S2

~E2

I2
×

~H∗2
I∗2
· ~ds+

∫
S1

~E2

I2
×

~H∗2
I∗2
· ~ds . (12)
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The last integrals in each of the above equations turn out to be negligible when
compared to the first integrals. On Eq. 9 it is negligible because one is integrating the
Poynting vector produced by antenna 1 over a closed volume surrounding antenna 2,
and the power that is going into S2 is equal to the power leaving S2 (the energy is
pretty much just passing through). For similar reasons the last integral in Eq. 12 is
zero. With respect to the last integral of Eq. 10, since the diameter of antenna 2 is very
small in relation to the wavelength, on the surface S2 the ~E2 is everywhere in the same
direction (please take a good look at the upcoming Eq. 22) and the same is true for ~H1.
This causes the integration over half the surface S2 to cancel the integration over the
remaining half, causing then the last integral of Eq. 10 to be zero. The same type of
behavior also causes the last integral in Eq. 11 to be zero. We then have

Z11 =
1

I1I∗1

∫
S1

~E1 × ~H∗1 · ~ds , (13)

Z12 =
1

I2I∗1

∫
S1

~E2 × ~H∗1 · ~ds , (14)

Z21 =
1

I1I∗2

∫
S2

~E1 × ~H∗2 · ~ds , (15)

Z22 =
1

I2I∗2

∫
S2

~E2 × ~H∗2 · ~ds . (16)

If you look carefully at the all details of the above derivation you will conclude that
Eqs. 13 – 16 are very general; they are actually valid for any two antennas, provided
that they have circuit terminals (they are not valid just for linear dipoles). By the
way, the results provided by Eqs. 13 and 16 should already look familiar, as they were
already derived in the previous laboratory; they are the dipoles’ input impedances.

Observe that once you have the parameters of the impedance matrix in hand (de-
termined using analysis, experiments, or both), other matrix representations can be
derived from them. For instance, the S-parameters that VNAs routinely measure can
be obtained from the above impedance parameters using2

S11 =
(Z11 − Z0)(Z22 + Z0)− Z12Z21

(Z11 + Z0)(Z22 + Z0)− Z12Z21

, (17)

S12 =
2Z12Z0

(Z11 + Z0)(Z22 + Z0)− Z12Z21

, (18)

S21 =
2Z21Z0

(Z11 + Z0)(Z22 + Z0)− Z12Z21

, (19)

S22 =
(Z11 + Z0)(Z22 − Z0)− Z12Z21

(Z11 + Z0)(Z22 + Z0)− Z12Z21

. (20)

As seeing in a previous laboratory, the physical arrangement of Fig.1 can then
be represented by the equivalent T -circuit shown in Fig. 2, where the corresponding

2See for example D. M. Pozar, Microwave Engineering, Third ed., John Wiley & Sons, Inc., 2005,
pag. 187.
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impedances are given by Eqs. 13 – 16. In this section we will be mainly focused on
Eq. 15, which provides the coupling between dipoles 1 and 2. This Z21, which by
reciprocity is equal to Z12, is the term that makes possible for the two antennas to
communicate with each other.

Figure 2: Equivalent circuit of the reciprocal link between two antennas

Note that the ~E1 of Eq. 15 is the electric field produced by antenna 1 along antenna 2
(i.e., the electric field radiated by the current that is flowing on antenna 1), and ~H∗2 is
the complex conjugate of the magnetic field along antenna 2 (i.e., the complex conjugate
of the magnetic field radiated by the current that is flowing on antenna 2). These two
fields can be calculated by properly using Eqs. 22 and 23 given below3, which give the
field radiated by a thin dipole antenna at any distance, when a sinusoidal current

I(z) ≈ Im sin[β0(h− |z|)] (21)

is flowing on its arms. Even though you have already used these equations in a previous
laboratory, for completeness they are being provided again here.

~E(P ) =
j η0 Im

4π

{
− r̂

1

r

[
2 e−jβ0R0 cos θ0 cos(β0h)− e−jβ0R1 cos θ1 − e−jβ0R2 cos θ2

]
+ ẑ

[
2
e−jβ0R0

R0

cos(β0h)− e−jβ0R1

R1

− e−jβ0R2

R2

]}
, (22)

~H(P ) =
−j Im

4π
φ̂

1

r

[
2 e−jβ0R0 cos(β0h)− e−jβ0R1 − e−jβ0R2

]
. (23)

Recall again that in these equations the observation point P is located by the cylindrical
coordinates (r, φ, z), the fields are described using the corresponding cylindrical unit
vectors (i.e., r̂, φ̂, and ẑ), the dipole has length 2h, negligibly small radius (the radius
a is not even present in these equations), the variables R0, R1, R2, θ0, θ1, and θ2 are
given by (see Fig. 3)

R0 =
√
r2 + z2 , (24)

R1 =
√
r2 + (z − h)2 , (25)

R2 =
√
r2 + (z + h)2 , (26)

cos θ0 = z/R0 , (27)

cos θ1 = (z − h)/R1 , (28)

cos θ2 = (z + h)/R2 , (29)

3E. C. Jordan Electromagnetic Waves and Radiating Systems, Prentice-Hall, Inc., April 1960,
pag. 320–324.
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and the current amplitude Im is related to the dipole input current Ii through

Im =
Ii

sin(β0h)
. (30)

With these equations we currently have all the means to use Eq. 15 to determine the
Z21 of two dipoles, located in close proximity or far away from each other.

Figure 3: Parameters associated
with the near-zone field of a
straight dipole

Before proceeding it is important to be able to
clearly and unambiguously differentiate between
the two cylindrical coordinate systems that will
need to be independently associated with anten-
nas 1 and 2, as the geometry shown in Fig. 3 will
need to be used to calculated the fields radiated by
both antennas 1 and 2. We will do this by using
corresponding subscripts: r1, φ1, z1 and r2, φ2, z2
will refer to the cylindrical coordinates of anten-
nas 1 and 2, respectively.

The cylindrical surface S2 has top and and bot-
tom caps located at z = ±h2, respectively. Hence
the surface S2 is constituted of three separate sur-
faces. However, if the antenna 2 diameter 2a2 is
small, which is usually the case when 2a2 � λ0,
the integration over these top and bottom caps
will yield a relatively small contribution to the
total integral value, and hence can be safely ne-
glected when compared with the integration over
the side surface of the cylinder S2. In this case
~ds = r̂2 dz2 r2 dφ2 and Eq. 15 becomes

Z21 =
1

I1I∗2

2π∫
0

+h2∫
−h2

(
~E1

∣∣∣
r1=`
× ~H∗2

∣∣∣
r2=a2

)
· r̂2 dz2 a2 dφ2 , (31)

where we have assumed that ` + a2 ≈ `, since a2 is being assumed to be very small.

Now, since from Eqs. 22 and 23 we see the amplitude of the vector ~E1

∣∣∣
r1=`
× ~H∗2

∣∣∣
r2=a2

is

independent of φ2,

Z21 =
2πa2
I1I∗2

+h2∫
−h2

(
~E1

∣∣∣
r1=`
× ~H∗2

∣∣∣
r2=a2

)
· r̂2 dz2 . (32)

Equation 32 provides the desired result for the mutual impedance between two dipole
antennas. To use it one needs to know the electromagnetic fields ~E1|r1=` and ~H∗2 |r2=a2
that are radiated by dipoles 1 and 2 on the surface of the dipole 2, respectively (i.e.,
surface with r2 = a2). Whenever 2a2 � λ0, a very good approximation for these two
fields is provided by Eqs. 22 and 23.
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There is an alternative way to write Eq. 32 that you may find a bit more convenient.
To derive it observe from Eqs. 22 and 23 that ~E = r̂Er + ẑEz and ~H = φ̂Hφ, and hence
Eq. 32 can be rewritten as

Z21 =
−2πa2
I1I∗2

+h2∫
−h2

E1z2|r1=` H
∗
2φ2

∣∣
r2=a2
dz2 . (33)

There is yet another alternative way to rewrite this last equation, which yields the
form most commonly found in the literature. To obtain it first recall Ampere’s law,
namely ∮

C

~H · ~d` = jωε0

∫
Sc

~E · ~ds+

∫
Sc

~J · ~ds , (34)

where for the application at hand the contour C will be assumed to be a circle of radius
a2 enclosing antenna 2, with center at the coordinate axis z2, and the surface Sc is then
the surface enclosed by this circle. Recalling again from Eq. 23 that ~H2φ2 = φ̂2H2φ2 we
can write

2πa2H2φ2

∣∣∣
r2=a2

= jωε0

∫
Sc

~E2 · ~ds+

∫
Sc

~J2 · ~ds . (35)

Now, observing that the first term on the right side of Eq. 35 is negligibly small and∫
Sc

~J2 · ~ds = I2(z2) , (36)

where I2(z2) is the current flowing on antenna 2 (given by Eq. 21), we obtain

2πa2H2φ2

∣∣∣
r2=a2

= I2(z2) , (37)

With this last result Eq. 33 becomes

Z21 =
−I∗m2

I1I∗2

+h2∫
−h2

E1z2

∣∣∣∣
on antenna 2

sin[β0(h2 − |z2|)] dz2 , (38)

where 2h2 and Im2 are the length and current amplitude of dipole 2, respectively, and
E1z2 is the ẑ2 component of the field produced by the dipole 1 along the dipole 2.

Observe that the cylindrical integration surface S1 +S2 was intentionally made snug
with the two dipole antennas’ arms (see Fig. 1). This is required to capture all the
reactive power present in the space surrounding the two antennas (this reactive power
is responsible for the reactive part of the antenna mutual impedance Z21). There is a bit
of energy stored in both the electric and magnetic fields that exist at the antennas’ feed
point regions (in the regions with z1, z2 ≈ 0, where the two antennas’ arms come together
and are connected to the transmission lines). In other words, there is some reactive
power present on the approximately parallel-plate capacitors and wire inductances that
exist at the antennas’ feed points. This reactive power is not being captured by Eq. 38,
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since any fringe field effects present in the z1, z2 ≈ 0 regions are being ignored and
also the integrations only capture the reactive power outside S1 + S2. If for any reason
these parasitic reactive power are deemed relevant to the communication link operation
(perhaps because the antennas’ terminals are excessively close to each other), they
then need to be accounted for separately, by properly adding the effects of the stray
inductances Lf and capacitances Cf .

Let’s now apply the above results to understand, calculate, and measure the perfor-
mance of an electromagnetic link between two identical monopoles over ground planes.

1. Augment your previously developed Matlab code to use Eq. 38 to calculate and
plot the transmission coefficient S21 between two dipole antennas, in addition to
the S11 computation.

Since the calculation of S21 is very similar to the calculation of S11, pretty much
all you have to do is duplicate and modify your previously developed S11 code to
also perform the S21 calculation.

Using for antennas 1 and 2 the 600 MHz monopole over ground plane that you
designed, constructed, and measured in a previous laboratory, separated by a
distance ` = 500 mm, calculate the corresponding S21 over the 50 kHz to 1000 MHz
frequency range and provide the corresponding |S21| (in dB) and ∠S21 (in deg)
plots.

Note that, according to the 2D2/λ0 far-zone criterion, the ` = 500 mm separation
is more than sufficient to place antennas 1 and 2 well in the far zone of each
other. However, your Matlab code does not require the two antennas to be in the
far-zone of each other; it is capable of accurately calculating S21 even if the two
antennas are very close to each other.

2. Construct antenna 2 by duplicating the hardware you did for antenna 1 in a
previous laboratory. Then put the two monopoles side by side, separated by a
distance ` = 500 mm (see Fig. 4). This will constitute the communication link
that you will be measuring.

Figure 4: Communication link between two monopoles, with ` = 500 mm
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Because you are going to be precisely measuring the signal that is received by
antenna 2 when antenna 1 is transmitting, and comparing it with your predic-
tions, it is very important that you minimize interference caused by reflections
from surrounding objects. For good measurement accuracy you should then keep
objects removed from your two antennas by at least a few wavelengths. Partic-
ularly troublesome are large flat surfaces near your communication link, as they
can produce strong interfering reflections.

Note that, if you put the two antennas on top of a flat ground, you will have
an unaccounted for very large flat surface near your communication link, and
its effect will depend on the nature of the ground (i.e., dry, wet, paved, rebar
reinforced, etc.). However, at our frequencies dry cemented pavements are usually
quite transparent and therefore their effect is negligible. Nevertheless, if you
experience significant disagreements between theory and measurements, causing
you to become suspicious of the ground impact, simply put your link on top of
either a wood table or wood chairs, and this should remove your suspicions.

3. Measure the S11 and S21 of your two antennas over the 50 kHz to 1000 MHz
frequency range and provide the corresponding |S11| and |S21| (in dB), and ∠S11

and ∠S21 (in deg) plots. Typical plots of the results that can be expected are
provided in Fig. 5 (the measurements were conducted with the two antennas
resting on top of a dry cemented pavement). Note that these plots include the
undesirable effects of the SMA-DIP8-SMA test fixture parasitic reactances, but
you will be handling these effects in the next section.

Figure 5: Typical monopole’s link embedded S-parameter results

Make sure to compare the predicted and measured results and discuss any relevant
details observed. Also make sure to explain why the communication is stronger
at the 600 MHz design frequency of your two antennas.
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3 De-Embedding the Effect of the Test Fixture

Although reasonable good agreement between theory and experiment should have been
obtained between your calculated and measured results (in the previous section), any
impact of the test fixture parasitic reactances have so far been ignored. In a previous
laboratory we de-embedded the effects of these reactances from the S11 and observed
that they caused a significant change on the antenna impedance. It is then only natural
to wonder how these parasitic reactances are also impacting the measured S21.

In this section we will address the problem of how to de-embed undesired parasitic
effects from all the measured scattering parameters in a systematic general way, and
not only from just the S11, as we did in a previous laboratory. To do this we will be
relying on linear algebra techniques.

A convenient general way to handle de-embedding is through the use of two-port
circuits’ transmission matrices (also called in the literature by ABCD matrices), namely

V1 = T11 V2 + T12 I
′
2 , (39)

I1 = T21 V2 + T22 I
′
2 , (40)

instead of the impedance matrices that we have been using up to now. In these equations
T11, T12, T21, and T22 are the transmission matrix elements, and V1, I1 and V2, I2 are
voltages and currents that are identical to the ones used in the impedance matrix (i.e.,
Eqs. 1 and 2). Note however that Eqs. 39 and 40 use instead I ′2, which is related
through I2 through I ′2 = −I2. The very useful difference between the transmission and
impedance matrices is that, in the transmission matrix, the port 1 variables (i.e., V1
and I1) and the port 2 variables (i.e., V2 and I ′2) are now on the left and right sides
of the equal signs, respectively. This rearrangement makes transmission matrices more
convenient for handling de-embedding tasks than other matrix representations (such as
impedance or scattering matrices). The reason behind this is that it is very easy to
determine the transmission matrix of a chain connection of several networks; because all
the parameters of port 2 are conveniently located on the right side of the equal sign in
Eqs. 39 and 40, all one needs to do is sequentially multiply the individual transmission
matrices of each network in the chain. How this property works in our favor will become
clear as we proceed, so please read on.

As previously mentioned, conversion formulas between all the various linear cir-
cuit matrix representations are available in the technical literature. But particularly
useful for the de-embedding task at hand are the conversion formulas between S- and
T-parameters, namely4

T11 =
(1 + S11)(1− S22) + S12S21

2S21

, (41)

T12 = Z0
(1 + S11)(1 + S22)− S12S21

2S21

, (42)

4See for example D. M. Pozar, Microwave Engineering, Third ed., John Wiley & Sons, Inc., 2005,
pag. 187.
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T21 =
1

Z0

(1− S11)(1− S22)− S12S21

2S21

, (43)

T22 =
(1− S11)(1 + S22) + S12S21

2S21

, (44)

and vice-verse

S11 =
T11 + T12/Z0 − T21Z0 − T22
T11 + T12/Z0 + T21Z0 + T22

, (45)

S12 =
2 (T11T22 − T12T21)

T11 + T12/Z0 + T21Z0 + T22
, (46)

S21 =
2

T11 + T12/Z0 + T21Z0 + T22
, (47)

S22 =
−T11 + T12/Z0 − T21Z0 + T22
T11 + T12/Z0 + T21Z0 + T22

. (48)

We know that in general S12 = S21 for reciprocal circuits. But notice that the above
Eqs. 42 and 43 clearly show that in general T12 6= T21, even for reciprocal circuits.
However, and as an alternative property, Eqs. 46 and 47 show that, for a reciprocal
circuit, the determinant of the transmission matrix [T ] is equal to 1; in other words

det[T ] = T11T22 − T12T21 = 1 . (49)

Let’s now return to the task of de-embedding the measured S-parameters of the link
between the two monopoles from the undesired SMA-DIP8-SMA test fixture parasitic
reactances. We know that, instead of measuring the desired S-parameters, we have
instead measured the S-matrix [Se] of the entire circuit shown in Fig. 6 (the superscript
e stands for embedded), where the box has the desired unadulterated S-matrix [S] of
the link between the two antennas (note the direction of the current I ′2, on port 2).
Taking advantage of our recent acquired transmission matrix knowledge, to de-embed
[Se] we will work instead with the corresponding embedded transmission matrix [T e]
and redraw the measured circuit as a chain of three T-matrices. What was measured

Figure 6: Measured communication link equivalent circuit

then was the matrix [T e], which is related to the desired de-embedded transmission
matrix [T ] through

[T e] = [T (1)]× [T ]× [T (2)] , (50)
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where the multiplication signs denote matrix multiplications, and [T (1)] and [T (2)] are
the transmission matrices of the test fixture parasitic circuits connected to ports 1 and
2 of the VNA, given by

[T (1)] =

[
1 XL

BC 1 +XLBC

]
(51)

and

[T (2)] =

[
1 +XLBC XL

BC 1

]
, (52)

respectively. The XL and BC used in the above equations are the reactance and sus-
ceptance associated with LS and CS, namely XL = jωLs and BC = jωCs, respectively.

Now observe that, if both sides of Eq. 50 are multiplied from the left by [T (1)]−1

and from the right by [T (2)]−1, where the minus subscripts indicate the corresponding
inverse matrices, one has

[T (1)]−1 × [T e]× [T (2)]−1 = [T (1)]−1 × [T (1)]× [T ]× [T (2)]× [T (2)]−1 . (53)

Finally, recalling that the product of any matrix by its inverse satisfies the commu-
tative property and is equal to a unitary matrix, we obtain the desired de-embedded
transmission matrix [T ] result, namely

[T ] = [T (1)]−1 × [T e]× [T (2)]−1 . (54)

Equation 54 provides a convenient way to de-embed our measurements, since [T e]
can be obtained from the measured [Se] using Eqs. 41 – 44 and the required two inverses
can be readily obtained from Eqs. 51 and 52 using the easily derived and readily available
formula for the inverse of a two-by-two matrix. Namely, if an arbitrary transmission
matrix [A] is equal to

[A] =

[
a b
c d

]
(55)

then its inverse is

[A]−1 =

[
d −b
−c a

]
, (56)

where we have already taken advantage of the fact that the determinant of transmission
matrices of reciprocal networks is equal to 1.

The above material provides a convenient systematic way to de-embed measured
S-parameters. In it we took advantage of the previously acquired knowledge of the
circuit that describes the parasitic reactances of the SMA-DIP8-SMA test fixture (pro-
vided by Eqs. 51 and 52), since it was already available. Note however that, for other
types of embedding networks, we would have used instead their corresponding transmis-
sion matrices for [T (1)] and [T (2)], and these could even have been matrices derived from
S-parameter measurements. Our method is then very general and powerful, and does
not even require an equivalent circuit for the embedding networks. However, you should
not get carried away by its capabilities, as it is always preferable to calibrate out unde-
sirable effects than to de-embed them, since a well-thought and carefully implemented
calibration invariably yields better measurement accuracy.
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The NanoVNA-F does not have intrinsic de-embedding capabilities in its firmware
(you then have to code your own de-embedding algorithm). Other much more expensive
commercially available VNAs do though, and it is based in the material that you have
just learned.

We will now use your recently acquired knowledge to de-embed the measured results
of the previous section. With this in mind, provide answers to the items below.

1. Derive Eqs. 51 and 52.

2. Derive Eq. 56.

3. Augment the Matlab code that you obtained in the previous section to de-embed
the measurements made on the link between the two monopoles.

Note that Matlab is a software originally developed to conveniently handle linear
algebra (i.e., matrices). Because of this it already has pretty much all the func-
tions required for linear algebra as intrinsic functions (e.g., calculation of matrix
inverses). In fact, when you use the simple product operator between two matrices
(i.e., the asterisk, without a preceding dot) Matlab automatically performs the
product of the two matrices. You can then handle the de-embedding task by ei-
ther programming the required matrix operations in an element-by-element basis,
or by taking full advantage of the available intrinsic linear algebra Matlab capa-
bilities. Even though the choice is yours, please make sure to include a printout
of your software as part of your laboratory report.

4. Use your Matlab code to provide plots of your de-embedded S-matrix results for
the link between the two-monopoles’, with ` = 500 mm, and comment on what
you are seeing.

If needed, compare the S11 de-embedded results that you obtained in a previous
laboratory with the current results, to confirm that you correctly implemented
the de-embedding algorithm.

4 Friis’ Formula

Observe that the above communication link calculations and measurements were per-
formed without any restrictions on the distance ` between the two antennas; our meth-
ods work regardless of how large or how small ` is (the two antennas can even be in the
near-zone of each other). However, in practice more often than not the distance ` is
very, very large. In such cases Eq. 15 shows that |Z21| ≈ 0, as it is inversely proportional

to ` (since ~E1 at the location of antenna 2 is proportional to 1/`). This makes possible
to simplify considerably Eq. 15 and therefore obtain a surprisingly simple result for the
power transfer between two antennas. This approximation yields what is commonly
referred to as the Friis’ formula5,6, a result so useful and simple that it is even suitable

5H. T. Friis,“A Note on a Simple Transmission Formula” Proc. of the I.R.E. and Waves and
Electrons, May 1946, pp. 254–256.

6D. K. Cheng, Field and Wave Electromagnetics, Second edition, Addison-Wesley Pub. Co., 1989,
Sec. 11-7.1.
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for hand-held calculations. As a last task for this laboratory let’s then take a good look
at this very important formula.

Friis’ formula assumes that no S21 phase information is needed and one is only
interested in determining the maximum possible power that can be transferred between
the two antennas located in free space. The Friis’ formula derivation then assumes
whatever is needed to assure this optimum power transfer, and hence provides an upper
bound type of result. At first you may think that this may not be very useful. However,
when implementing a communication link between two antennas it is of course good
practice to maximize the power transfer, and hence closely approach the result provided
by Friis’ formula. Furthermore, if the two antennas are very far apart, phase information
relative to a reference locally placed at the transmitter, as is done in VNA measurements
(the zero phase corresponds to the phase of the signal at the calibration short circuit)
is seldom possible or needed.

To maximize power transfer the two antennas must be properly oriented with respect
to each other (e.g., as depicted in Fig. 1, for a link between dipoles) and also be very
well matched to the input and output transmission lines. Recalling that |Z21| ≈ 0, the
equivalent circuit of Fig. 2 shows that we then somehow need to make Z11 = Z0 and
Z22 = Z0. With this Eq. 19 then reduces to

S21 =
Z21

2Z0

. (57)

Now, recalling that in this matched case

S21 =
V −2
V +
1

, (58)

we obtain

|S21|2 =
1
2
|V −2 |2/Z0

1
2
|V +

1 |2/Z0

=
Pr
Pt
, (59)

where Pt and Pr are the powers provided to antenna 1 and delivered by antenna 2,
respectively. Substituting Eq. 57 into Eq. 59 we then obtain

Pr
Pt

=

∣∣∣∣Z21

2Z0

∣∣∣∣2 . (60)

We will now proceed to obtain an approximation for |Z21|2 which, once substituted in
Eq. 60, will yield what is referred to as Friis’ formula.

Substituting Eq. 30 into Eq. 38 and observing that, since antenna 2 is far from
antenna 1, the electric field produced by antenna 1 (i.e., E1z2) can be considered constant
over the length of antenna 2, one obtains

Z21 =
−1

I1 sin(β0h2)
E1z2

+h2∫
−h2

sin[β0(h2 − |z2|)] dz2 . (61)

Evaluating the above integral then yields

Z21 =
1

I1 sin(β0h2)
E1z2

2

β0
[cos(β0h2)− 1] . (62)
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Now, again recalling that we are working with large ` values, observe that Eq. 22
yields for the electric field ~E2, produced by antenna 2 at the location of antenna 1, the
expression

~E2 = ẑ1
j η0 I2

4π sin(β0h2)

e−jβ0`

`
2 [cos(β0h2)− 1] . (63)

We can then divide Eq. 62 by the E2z1 provided by Eq. 63 and obtain

Z21 =
4π

jη0β0

`

e−jβ0`
E1z2

I1

E2z1

I2
. (64)

Before proceeding with the Friis’ formula derivation observe that, since what is being
called antennas 1 and 2 is arbitrary, the numbers 1 and 2 can be interchanged in Eq. 64
to yield

Z12 =
4π

jη0β0

`

e−jβ0`
E2z1

I2

E1z2

I1
, (65)

and since the right side of Eqs. 65 and 64 are equal, it is clear that Z12 = Z21. Note
however that, even though Z12 = Z21 for any ` value, in here we just confirmed that
Z12 = Z21 when the two antennas are far apart.

To finish our derivation of Friis’ formula we now substitute Eq. 64 into Eq. 60 to
obtain

Pr
Pt

=

(
4π`

β0

)2
1

4

|E1z2|2/(2η0)
1
2
|I1|2Z0

|E2z1|2/(2η0)
1
2
|I2|2Z0

. (66)

Finally recalling that, since the two antennas are assumed matched to the corresponding
transmission lines,

Pt =
1

2
|I1|2Z0 , (67)

Pr =
1

2
|I2|2Z0 , (68)

and the gain definition yields7

|E1z2|2

2η0
=
PtGt

4π`2
, (69)

|E2z1|2

2η0
=
PrGr

4π`2
, (70)

Eq. 66 can be rewritten as the desired Friis’ formula:

Pr
Pt

= GtGr

(
λ0
4π`

)2

. (71)

Although the format used in Eq. 71 is what is usually shown in the literature as
the Friis’ formula, since it is convenient for computations, is is possible to write this
equation is a slightly different way, one that more clearly shows how the communication
link is operating, namely

Pr = Pt Gt
1

4π`2
Aeff , (72)

7D. K. Cheng, Field and Wave Electromagnetics, Second edition, Addison-Wesley Pub. Co., 1989,
Sec. 11-3.
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where

Aeff = Gr
λ20
4π

(73)

is the effective area of the receiving antenna. Eq. 73 is a fundamental result; it relates
the transmitting (i.e., the gain) and receiving (i.e., the effective area) properties of an
antenna to each other.

Sequentially considering from left to right the terms present on the right of the equal
sign of Eq. 72, the power Pt is fed to the transmitting antenna, which concentrates it
in the direction of the receiving antenna with a gain Gt. This power then proceeds to
spread as it travels in free space towards the receiving antenna as a spherical wave (the
area of the sphere that has the receiving antenna on its surface is 4π`2, and hence the
term 1/(4π`2) can be referred to as the free-space decay factor). The radiated power
then finally arrives at the receiving antenna with a power density (in W/m2) equal to
Pt Gt/(4π`

2). The receiving antenna then collects the part of this power density that
falls into its effective area Aeff , and this becomes the received power Pr.

Equation 71 was derived specifically considering two dipole antennas (this fact came
in through Eqs. 61 and 63). This was done in the interest of clarity, since this laboratory
deals with dipole antennas. However, it is very important to point out that it is possible
to carry out the derivation without resorting to specific antenna geometries (antennas 1
and 2 do not even need to be equal), and therefore show that Eqs. 72 and 73 (and hence
Eq. 71) are actually general results, valid for any type of antennas.

By the way, Friis’ formula requires that the two antennas be located in free space
and with an unobstructed view of each other. Hence the case of a link between two
monopoles on top of a infinite ground plane does not satisfy this assumption. However,
it can be shown that the Pr/Pt result corresponding to this situation is just 1/4 of the
result provided by Eq. 71.

Let’s now see how Friis’ formula can be successfully applied to the communication
link that we calculated and measured in the previous section.

1. To start, what is the gain Gd of a half-wave long dipole? Provide your values in
both linear and dB scales.

2. What is the gain Gm of a quarter-wave long monopole on a perfectly conducting
ground plane of infinite extent? Provide your values in both linear and dB scales.

3. Augment the Matlab code that you generated in the previous section to also
calculate and plot the |S21| provided by Friis’ formula.

Note that, to compare the two theoretical approaches, you will be needing the
value of the gain of your monopoles with their finite ground planes (i.e., Gt and
Gr). However, let’s wait a bit before addressing this topic. For now, since it
is convenient to both cement your understanding as well as for code debugging
purposes, let’s consider only the predictions for a link between the two half-wave
dipoles (not two monopoles) previously designed for 600 MHz with 2a = 0.4 mm.

Observe that overall the predictions using Friis’ formula are showing very large
disagreements when compared to the predictions using the mutual impedance ap-
proach. However, at this point you should at least be seeing very good agreement
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at the 600 MHz frequency, since we know that our antennas have been designed
for, and hence work very well, at this frequency. We will address any observed
disagreement away from 600 MHz in a subsequent item. For now let’s concentrate
only on predictions at 600 MHz.

By the way, if you are not seeing good agreement between the two predictions at
600 MHz you either have bugs in your code or it is being used incorrectly (e.g.,
is your code calculating and using the correct dipole S11, S21, and gain values?).
Make sure to proceed to the next item only after you have good agreement at
600 MHz.

Please provide a plot of the |S21| of the dipole link, calculated using Friis’ formula
over the entire 50 kHz – 1.0 GHz frequency range, superimposed to the plot using
the previously implemented mutual impedance calculation.

4. Any discrepancies observed in the |S21| result provided by Friis’ formula, at
600 MHz, should by now have been successfully addressed in the previous item.
However, away from this frequency discrepancies of the order of tens of dBs still
remain, and hence can’t be ignored.

Since all the electrical lengths associated with the monopoles’ dimensions depend
on frequency, their radiation patterns also depend on frequency, and hence their
gain. Perhaps then these changes are responsible for the massive disagreements
observed away from 600 MHz. Since at first this may appear to be a reasonable
working hypothesis, let’s take a closer look at it. To this effect consider the
radiation patterns of linear dipoles, and explain (in your laboratory report) why
they are not changing excessively over our frequency range of interest8. Note that
even the radiation pattern of a Hertz dipole, which has negligible electrical length,
is very similar to the radiation pattern of a full-wave dipole. This important fact
indicates that the gain of the monopoles’ are quite stable with frequency, provided
that their electrical dimensions stay under about a wavelength, which is the case
of our monopoles over the 50 kHz – 1.0 GHz frequency range.

The cause of the large |S21| discrepancies observed are then not due to a variation
of antenna gain with frequency. A much more important effect is systematically
not being captured by Frii’s formula, because somehow this effect is not significant
at the operation frequency of a well designed antenna. Using this clue can you
think of what the effect is? If not, please go back to the above derivation of Friis’
formula, take a another careful look at it (the answer is in there), and only move
ahead after you have successfully determined what has been ignored.

Please provide a plot of the |S21| of the dipole link, calculated using the revised
Friis’ formula over the entire 50 kHz – 1.0 GHz frequency range, superimposed
to the plot using the previous implemented mutual impedance calculation. Your
plot should now show excellent agreement between the two theoretical methods
over the entire 50 kHz – 1.0 GHz frequency range.

8Check for example Fig. 11-6 of D. K. Cheng, Field and Wave Electromagnetics, Second edition,
Addison-Wesley Pub. Co., 1989.
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5. Let’s now return to the link between two monopole antennas, which is what you
have previously measured. Since the Friis’ formula is currently using the gain
values of half-wave dipoles, they have to be changed to use instead the monopole
gain values.

Use the gain value of a quarter-wave long monopole on a perfectly conducting
ground plane of infinite extent in your calculations and take a look at how they
compare (do not forget that the S11 and the S21 of the monopole are half the
values calculated for the dipole).

Perhaps to your surprise, observe that now the predicted values using the mutual
impedance technique and the Frii’s formula disagree significantly, even though the
measured values agree well with the mutual impedance technique predictions.

6. The reason for the disagreement observed in the previous item rests on the fact
that the monopoles’ gain depend significantly on the size of their ground planes.
You can find a large amount of information on this effect in the literature, as it
has been observed and discussed since the early years of the twentieth century,
and perhaps surprisingly continues to be revisited to this day9.

With the above in mind we will then approach the monopole gain in a reverse
way. Since by now we know that we can trust the measurements and predictions
obtained in the previous section, use Friis’ formula to measure the gain Gm of
your monopoles at 600 MHz, provide the measured value with your report, add
the correct gain value to your Matlab code predictions, and provide the correspond
plots with your report. By the way, and in case you are wondering, this procedure
is actually how gain values are very precisely measured in practice. (Fig. 7 depict
some typical results).

No matter how small the Pr of Eq. 71 becomes as ` increases, it is never zero, and it is
this small value that renders the communication between two distant antennas possible.
As an extreme example, engineers have been successfully using these exceeding small Pr
values to communicate with spacecraft at the edge of our solar system, a communication
feat over truly astronomical distances. What happens is that the 1/` proportionality
associated with radiation actually yields a very slow field decay as the distance between
the two antennas increases.

The above free-space decay with ` is way, way more benign that the exponential
decay caused by the unavoidable attenuation of confined communications (e.g., trans-
mission lines and optical fibers). To provide a comparison, a very high quality modern
optical fiber is capable of yielding the impressively small attenuation α ≈ 0.2 dB/km,
at the infrared communication wavelength of 1.55 µm. Even though this is quite a
technological feat, it quickly adds up as the traveled distance increases. As an ex-
ample, consider an underwater transatlantic optical cable connecting California to

9See for instance the values provided in Tab. 1 of Z. Živković, D. Senić, C. Bodendorf,
J. Skrzypczynski, and A. Šarolić, “Radiation pattern and impedance of a quarter wavelength monopole
antenna above a finite ground plane, ” SoftCOM 2012, 20th International Conference on Software,
Telecommunications and Computer Networks, 2012, pp. 1-5. They show that the gain of a monopole
in a circular plane of ∼ 0.5λ0 radius is lower by about 3 dB from the infinite ground plane value.
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Figure 7: Typical monopole’s link de-embedded S-parameter results

Hawaii. Since the corresponding distance is about 4,450 km, an whopping attenuation of
4,450 × 0.2 = 890 dB will result, and hence it is impossible to directly use an optical
fiber to communicate between California and Hawaii. As a consequence, underwater
transatlantic optical cables typically have to deal with no more than about 100 km
spacing between the required regenerative signal repeaters, as the 100 × 0.2 = 20 dB
is about the maximum that can be tolerated to maintain the needed signal quality for
the required high-speed communication. In comparison NASA’s Voyager 1 spacecraft,
as of 2022 humankind’s most distant operational spacecraft, has been flying for about
45 years and is currently around 156 astronomical units (i.e., AU) away from earth.
Even though this corresponds to the incredible distance of ` = 23.3 × 1012 m, the as-
sociated free-space decay present in Eq. 71 is 10 log(4π`2) = 278 dB. Although this is
still a very large value, with the help of very large antennas (to provide very large gain
values) and radiated power, and very low-noise receivers, radio communications with
Voyager 1 continues to occur in 2022, albeit at very low data rates.
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