Towards a Scalable Theory of Control

April 9, 2018

Anders Rantzer

Lund University

Classical control theory does not scale well for large systems like traffic networks, power networks and chemical reaction networks. To change this situation, new approaches need to be developed, not only for analysis and synthesis of controllers, but also for modelling and verification. In this lecture we will present a class of networked control problems for which scalable distributed controllers can be proved to achieve the same performance as the best centralized ones. The control objective is stated in terms of frequency weighted H-infinity norms, which makes it possible to combine disturbance rejection at low frequencies with robustness to high frequency measurement noise and model errors. An optimal controller is given in the form of a multi-variable PI controller, which is distributed in the sense that control action along a given network edge is entirely determined by states at nodes connected by that edge. We will discuss some application examples, as well as connections to other aspects of scalability.
Published on April 9th, 2018Last updated on April 9th, 2018